Как определить общий катод или анод

Содержание:

Общий анод против общего катода

Анод и катод необходимы для электрических установок, где присутствует ток. Электрохимические ячейки, электронно-лучевые трубки и рентгеновские трубки – вот некоторые примеры, в которых мы встречаем аноды и катоды. Когда течет ток, текут отрицательно заряженные электроны. Другими словами, ток переносится движущимися электронами. Когда электроны движутся в одном направлении, мы говорим, что ток течет в направлении, противоположном электронам. Итак, мы говорим о положительном токе. Для устройства, когда мы говорим «ток на входе», это означает, что ток течет в систему. «Current-out» означает, что ток выходит из системы. Анод и катод определяются этим током. В некоторых устройствах однозначно нельзя назвать анодом, а другим – катодом. В зависимости от обстоятельств электрод, когда-то выполнявший функцию катода, может быть заменен на работу в качестве анода. Например, когда аккумулятор заряжается, положительный вывод является анодом, но когда тот же аккумулятор разряжается, катод становится положительным выводом. Однако у неперезаряжаемых батарей и светодиодов аноды и катоды являются постоянными. Однако для целей исследования и для простоты мы можем вспомнить анод и катод в отношении их функций, а не структуры.

Общий анод

Анод – это вывод, по которому ток течет снаружи. Если мы возьмем в качестве примера электрохимический элемент, анод можно вспомнить как электрод, к которому притягиваются анионы в растворах электролитов. Таким образом, из внешней цепи ток течет в анод, а это означает, что электроны уходят от анода. Обычно на аноде происходят реакции окисления. Поэтому, когда анионы попадают в анод в растворе, они подвергаются окислению и высвобождают электроны. Следовательно, на аноде больше электронов по сравнению с катодом. Из-за этого электроны текут на катод от анода. Поскольку ток протекает в направлении, противоположном потоку электронов, мы рассматриваем его как ток, текущий в анод.

В семисегментных дисплеях используется общий анод. Это электронное устройство отображения, которое показывает десятичные числа. Они широко используются в цифровых часах, измерителях и т. Д. В этих дисплеях все аноды подключены к одной точке, и она становится общим анодом. Таким образом, вместо семи анодов используется только один общий анод. Положительный конец источника питания подключен к аноду. Однако питание будет подаваться на все семь сегментов.

Общий катод

Катод – это электрод, по которому положительный ток выходит из системы. В электрохимической ячейке внутри раствора катионы притягиваются к катоду. На катоде происходит реакция восстановления; следовательно, должны быть электроны. Поскольку ток течет из электрода, втекают электроны. По мере того, как эти электроны используются до реакций восстановления, будет больше недостатков электронов. Это позволяет большему количеству электронов попадать в катод от анода.

Когда все семь катодов 7-сегментного дисплея соединены вместе, он становится общим катодом. При использовании семи сегментов общий катод должен быть заземлен.

В чем разница между общим анодом и общим катодом?

• В семисегментных дисплеях, когда все аноды подключены к одной точке, анод становится общим. Общий катод означает, что все семь катодов 7-сегментного дисплея соединены вместе.

• Для работы на общий анод должно подаваться положительное напряжение, а общий катод должен быть заземлен.

Обозначение в электрохимии и цветной металлургии

Катод — определение и практическое применение

Понятие анодов в электролитических процессах применимо в отношении положительно заряженных электродов. Электролиз, с помощью которого выделяются или очищаются различные химические элементы, – это влияние электрического тока на электролит. Электролитом выступают растворы солей или кислот. Другим электродом, участвующим в этой реакции, выступает катод.

Внимание! На отрицательно заряженном катоде (К) осуществляется реакция восстановления, на аноде (А) – процесс окисления. При этом «А» может частично разрушаться, участвуя в очищении металлов от нежелательных добавок

В металлургической промышленности аноды используют при нанесении защитных слоёв на продукт электрохимическим методом (гальваника) или электро-рафинированием. Электрическое очищение позволяет растворять на «А» черновой металл (с примесями) и осаждать его на «К» уже в очищенном виде.

Ряд часто применяемых анодов – изготовленные из металлов:

  • цинка;
  • меди;
  • никеля;
  • кадмия;
  • свинцовые (сплав свинца с сурьмой);
  • серебра;
  • золота;
  • платины.

Никелирование, оцинкование и прочее нанесение защитных или эстетически востребованных покрытий на изделия выполняются в основном из недрагоценных металлов.

С помощью «А» из драгметаллов повышают электропроводность компонентов электрических изделий и наносят слои благородных металлов на ювелирные украшения.

К сведению. Осаждаемый на катоде чистый металл также называют «катодом». Например, чистая медь полученная таким образом именуется «медный катод». Дальше её используют для изготовления медной фольги, проволоки и прочего.


Рафинирование металлов

Гальванотехника

Процессы осаждения металлов в результате химической реакции под воздействием электрического тока (при электролизе) называют гальванотехникой. Таким образом мир получил посеребренные, золоченные, хромированные или покрытые другими металлами украшения и детали. Этот процесс используют как в декоративных, так и в прикладных целях – для улучшения стойкости к коррозии различных узлов и агрегатов механизмов.

Принцип действия установок для нанесения гальванического покрытия лежит в использовании растворов солей элементов, которыми будут покрывать деталь, в качестве электролита.

В гальванике анод также является электродом, к которому подключаются плюсовой вывод источника питания, соответственно катод в этом случае – это минус. При этом металл осаждается (восстанавливается) на минусовом электроде (реакция восстановления). То есть если вы хотите сделать позолоченное кольцо своими руками – подключите к нему минусовой вывод блока питания и поместите в ёмкость с соответствующим раствором.

Распознавание полярности источником питания.

Следующим наглядным методом для распознания катода и анода будет присоединение к источнику питания. Данный способ, как и предыдущий, позволяет узнать еще и исправность LED элемента.

Естественно, что для опыта необходим источник напряжения. Отлично подойдет блок питания с плавной регулировкой. Светодиод следует присоединить и постепенно увеличивать напряжение. Если при подаче 3-4 В элемент еще не светится, значит, с полярностью не угадали.

Если такого блока питания под рукой нет, то можно применить батарейку или аккумулятор от мобильного телефона. Поскольку напряжение на них может достигать 12 В, то напрямую светодиод присоединять нельзя. Для предупреждения поломки следует включить в цепь резистор. Выбрать подходящее по величине сопротивление вам поможет статья «Расчет резистора (сопротивления) для светодиода».

Резистор стоит подпаять к одному из контактов LED элемента. Полученной конструкцией коснуться выводов источника питания. Если полярность предположена верно, то диод начнет излучать свет. В ином случае, надо поменять контакты местами.

Если под рукой есть плоская севшая батарейка от часов или с материнской платы (тип CR2032), то можно обойтись без резистора. Напряжением таких источников питания не превышает 6 В, что безопасно для светодиода. Батарейку зажимают между выводами диода и по свечению или его отсутствию определяют полярность.

Как определить, где анод, а где катод?

При определении катода и анода необходимо в первую очередь ориентироваться на направление тока, а не на полярность источника питания. Несмотря на то, что эти понятия тесно связаны с полярностью тока, они больше обусловлены направлениями векторов электричества.

Например, в аккумуляторах, при перезарядке, происходит изменение ролей катода и анода. Это связано с тем, что во время зарядки изменяется направление электрического тока. Электрод, выполнявший роль электрода при работе аккумулятора в режиме источника питания во время зарядки выполняет функции катода и наоборот – катод превращается в анод.

На рис. 1, изображено процесс электролиза, при котором происходит перемещение анионов (отрицательных ионов) и катионов (положительных ионов). Анионы устремляются к аноду, а положительные катионы – в сторону катода.

Рис. 1. Электролиз

При электролизе перемещаются носители зарядов разных знаков, однако, по определению, анодом является тот электрод, в который втекает ток. На рисунке анод подсоединён к положительному полюсу источника тока, а значит, ток условно втекает в этот электрод.

Обратите внимание на рисунок 2, где изображена схема гальванического элемента. Рис. 2

Гальванический элемент

2. Гальванический элемент

Рис. 2. Гальванический элемент

Плюсовой вывод источника тока является катодом, а не анодом, как можно было бы ожидать. При внимательном изучении принципа работы гальванического элемента можно понять, почему анод является отрицательным полюсом.

Обратите внимание на рисунок строения гальванического источника тока. Стрелки (вверху) указывают направление движения электронов, однако направлением тока условно принято считать перемещение от плюса к минусу. То есть, при замыкании цепи, ток входит именно в отрицательный полюс, который и является анодом, на котором происходит реакция окисления

Иначе говоря, ток от положительного электрода через нагрузку попадает на анод, являющийся отрицательным полюсом гальванического элемента. При вдумчивом подходе все стает на свои места

То есть, при замыкании цепи, ток входит именно в отрицательный полюс, который и является анодом, на котором происходит реакция окисления. Иначе говоря, ток от положительного электрода через нагрузку попадает на анод, являющийся отрицательным полюсом гальванического элемента. При вдумчивом подходе все стает на свои места.

При определении позиций анода и катода в радиоэлектронных элементах пользуются справочными материалами.

На назначение электродов указывает:

  • форма корпуса (рис. 3);
  • длина выводов (для светодиодов) (рис. 4);
  • метки на корпусах приборов или знака анода;
  • различная толщина выводов диода.

Рис. 3. Диод

Рис. 4. Электроды светодиода Определение назначений выводов у полупроводниковых диодов можно определить с помощью измерительных приборов. Например, все типы диодов (кроме стабилитронов) проводят ток только в одном направлении. Если вы подключили тестер или омметр к диоду, и он показал незначительное сопротивление, то к положительному щупу прибора подключен анод, а к отрицательному – катод.

Если известен тип проводимости транзистора, то с помощью того же тестера можно определить выводы эмиттера и коллектора. Между ними сопротивление бесконечно велико (тока нет), а между базой и каждым из них проводимость будет (только в одну сторону, как у диода). Зная тип проводимости, по аналогии с диодом, можно определить: где анод, а где катод, а значит определить выводы коллектора или эмиттера (см. рис. 5).

Рис. 5. Транзистор на схемах и его электроды

Что касается вакуумных диодов, то их невозможно проверить путем измерения обычными приборами. Поэтому их выводы расположены таким образом, чтобы исключить ошибки при подключении. В электронных лампах выводы точно совпадают с расположением контактов гнезда, предназначенного для этого радиоэлемента.

Визуальное определение.

Если техническая документация недоступна, то для начала элемент стоит внимательно рассмотреть. Часто это помогает понять, где плюс у светодиода. У наиболее распространенного типа LED устройств – цилиндрического диода размером не менее 3,5 мм – один контакт длиннее. Такое конструктивное решение придумано для индикации полярности. Длинный вывод  является положительным анодом.

Распознать плюс и минус можно, если удастся рассмотреть, что у светодиода внутри. Сквозь прозрачную оболочку заметно, что площадь анода (положительного контакта) меньше, чем у катода (отрицательного).

Если на корпусе светодиода имеется скос, то это признак катода. 

Чем выше типоразмер и мощность LED изделия, тем больше шансы определить полярность «на глаз».

Виды диодов

Светодиодные элементы делятся на 2 объёмных вида: полупроводниковые и неполупроводниковые. Устройство первого подразумевает небольшую ёмкость с выкачанным воздухом и двумя электродами внутри:

  • Плюсовым, обладающим электропроводностью P.
  • Минусовым, обладающим электропроводностью N.

Анод и катод в светодиодеИсточник multiurok.ru

Неполупроводниковые диоды делятся в свою очередь ещё на 2 группы:

  • Вакуумные (кенотроны), построенные по принципу лампы, имеющей 2 электрода, где один из них представлен как нить накаливания. В приоткрытом положении движение электронов осуществляется в сторону от полюса к минусу. В закрытом положении траектория перемещения изменяется в противоположную сторону или приостанавливается.
  • Наполненные газом (стабилитроны с тлеющим либо коронным зарядом игнитронов и газотронов). Из объёмного списка элементов наибольшая популярность присуща газотронам с дуговым зарядом (стабилитронам). Внутрь них закачивается инертный газ, помещаются оксидные термокатоды. Ключевой особенностью таких светодиодов является возможность к выдаче высокого напряжения на выходе и способность функционировать с напряжением, значение которого может достигать нескольких десятков ампер.

Положительно заряженный электрод

Положительно заряженный электрод ( анод) обозн.

Положительно заряженный электрод, на котором происходит восстановление анионов, называют анодом.

Положительно заряженный электрод ( анод) имеет форму пластины или стержня.

На положительно заряженном электроде ( аноде) проходят реакции окисления, характер которых зависит от того, способен ли растворяться металлический анод в конкретных условиях электролиза или он находится в инертном ( пассивном) состоянии.

Анод — положительно заряженный электрод электровакуумного прибора, к которому под действием ускоряющего электрического поля движутся электроны, испускаемые катодом. Кинетическая энергия электронов, входящих в анод, переходит в тепловую, которая может вызвать значительное повышение температуры анода и даже расплавить его. Поэтому важным параметром электровакуумного прибора является максимально допустимая мощность, рассеиваемая анодом в виде тепла. Для обеспечения хорошего отвода тепла от анодов их поверхности делают темными — покрывают слоем угля, циркония или титана, которые имеют наибольший коэффициент излучения. Аноды изготовляют из молибдена, тантала, никеля или графита в виде цилиндров, плоскостей или колпачков.

Со стороны положительно заряженных электродов на частицу действует отталкивающая оила, а оо стороны отрицательно заряженных-притягивающая. По действием этих сил частицы претерпевают незначительные отклонения и выходят за пределы системы электродов.

Возникновение короны у положительно заряженного стержня.

При развитии короны вблизи положительно заряженного электрода происходит постоянное расширение области, охваченной короной. Под действием сил электрического поля легкие электроны лавины передвигаются к стержню и поглощаются им, тяжелые положительные ионы направляются к катоду.

Электрон может двигаться к положительно заряженному электроду за счет туннельного просачивания через потенциальные барьеры под влиянием приложенного напряжения. Передвижение электрона с п / 2 уровня молекулы, соседней с возбужденной, заполняет положительную дырку в последней и создает в свою очередь положительную дырку в ней самой. Перемещения такого рода приводят к миграции положительной дырки к отрицательному электроду и создает дырочный ток.

Полируемая деталь всегда подвешивается на положительно заряженный электрод — анод. Основной недостаток электрохимического полирования — сглаживание острых углов при полировании деталей сложной формы. Плотность тока на остриях детали наибольшая, поэтому острые углы растворяются быстрее, чем остальная часть детали.

Электролиз хлорной меди.

Отрицательные ионы хлора притягиваются к положительно заряженному электроду — аноду.

Отрицательно заряженные ионы хлора притягиваются к положительно заряженному электроду — аноду. На поверхности анода каждый ион хлора С1 — разряжается, отдавая электрон аноду.

Явление термоэлектронной эмиссии.

Вылетевшие из нити лампы электроны притягиваются положительно заряженным электродом А, вследствие чего во внешней цепи устанавливается ток. Если же электрод А соединен с отрицательным полюсом батареи, то он отталкивает электроны, вылетающие из накаленной нити; в этом случае тока во внешней цепи не будет.

Анод на аккумуляторе, гальваническом элементе, в диоде и в других приборах. Анод при электролизе водного и иного раствора. Процессы на аноде:

Анод (др.-греч. ἄνοδος – «движение вверх») – это электрод некоторого прибора, в который втекает электрический ток (в его конвенциональном понимании как поток положительных зарядов), в противоположность катоду из которого он вытекает.

Анод в электрохимии (при электролизе) – это электрод, на котором происходят реакции окисления. Например, при электролитическом рафинировании металлов (меди, никеля, цинка и пр.) либо при нанесении на поверхность изделия слоя металла электрохимическим способом на аноде происходит разрушение (растворение) анода, в результате которого металл с примесями растворяется и осаждается в очищенном виде на катоде или на поверхности изделия, выступающего в качестве катода.

Основное распространение получили аноды из цинка, никеля, меди (среди которых отдельно выделяют медно-фосфористые, марки АМФ), кадмия, бронзы, олова, сплава свинца и сурьмы, серебра, золота и платины. Аноды из недрагоценных металлов применяются для повышения коррозионной стойкости, повышения эстетических свойств предметов и др. целей. Аноды из драгоценных металлов применяются гальваническим производством для повышения электропроводности изделий и др.

Анод в вакуумных электронных приборах – это электрод, который притягивает к себе летящие электроны, испущенные катодом вследствие термоэлектронной эмиссии. В электронных лампах и рентгеновских трубках конструкция анода такова, что он полностью поглощает электроны. А в электронно-лучевых приборах анод является элементом электронной пушки. Он поглощает лишь часть летящих электронов, формируя после себя электронный луч.

Термоэлектронная эмиссия – это явление выхода электронов из твёрдого тела, металла или карбидов или боридов переходных металлов в свободное пространство, обычно в вакуум или разрежённый газ при нагреве его до высокой температуры. Заметная эмиссия электронов наблюдается при нагреве чистых металлов только до температур свыше 900 К.

Анод в полупроводниковом приборе (диоде, тиристоре) – это электрод, подключенный к положительному полюсу источника тока, когда при приложении прямого напряжения прибор открыт (то есть имеет маленькое сопротивление и через прибор течёт прямой ток).

Анод химического источника тока (в аккумуляторе и ином гальваническом элементе) в соответствии с ГОСТ 15596-82 «Источники тока химические. Термины и определения (с Изменением № 1)» – это электрод химического источника тока, на котором протекают окислительные процессы.

Электропроводимость элементов

Собственной проводимостью полупроводника называется свойство, обусловленное носителями, образовавшимися в следствие перехода электронов из валентной зоны в зону проводимости. При температуре, близкой к абсолютному нулю, все уровни в валентной зоне полностью заполнены, а в зоне проводимости – свободны, и полупроводник по свойствам близок к диэлектрику.

Указание в таблице Менделеева

Повышение температуры приводит к тому, что часть электронов из валентной зоны переходит в зону проводимости. Каждый подобный электрон оставляет после себя в валентной зоне свободное место – дырку, рассматриваемую как эквивалентный частице положительный заряд. Следовательно, электрон и дырка рождаются одновременно – парой.

Свойства особого типа проводимости обусловлены наличием примесей. Введение примеси (порядка 0,01%) изменяет энергетическую структуру полупроводника, в запрещенной зоне появляются локальные энергетические состояния.  Этот процесс получил научное название – легирование. То есть, процесс, подразумевающий внедрение в состав основного вещества определенных добавок и примесей. Легирование используется во время производства полупроводниковых приборов и деталей. Главная задача этого процесса – изменить концентрацию носителей внутри зарядов. Для этого можно воспользоваться имплантацией ионов или трансмутационным легированием.

Механизм электрической проводимости

Проводимость таких материалов, как полупроводники, имеет иной характер, чем у обычных проводников. Главное условие возникновения тока в материалах – наличие достаточного количества свободных электронов. Кристаллическая структура полупроводниковых материалов характеризуется ковалентными химическими связями, когда каждый электрон ядра связан с двумя рядом стоящими атомами.

Электроны веществ участвуют в переносе заряда при получении некоторой энергии. Работа энергии для полупроводников имеет значение порядка единиц электрон-вольт (эВ). У проводников это значение меньше, у диэлектриков, соответственно, больше.

Дырка

Важная особенность рассматриваемых материалов – они могут обладать особым типом проводимости – дырочной. В электронной оболочке атома в момент отрыва и ухода электрона образуется свободное место, которое принято именовать дыркой. Соответственно, дырка имеет положительный заряд, направление движения противоположно потоку электронов.

Электронная и дырочная проводимость

Энергетические зоны

Все вещества характеризуются энергетическими зонами электронов оболочки атома. Таких зон три:

  • Зона проводимости;
  • Запрещенная зона;
  • Зона валентности.

Название запрещенной зоны говорит о том, что электрон находиться в ней не может. Поэтому для возникновения тока электрон должен переместиться в зону проводимости из стабильной валентной зоны. Чем шире запрещенная зона, тем свойства материала приближаются к диэлектрикам.

Энергетические зоны

Подвижность

При воздействии электрического поля в материалах начинается движение носителей заряда. В рассматриваемом случае это электроны и дырки. Зависимость между скоростью движения и величиной напряженности электрического поля при отсутствии влияния нагрева называется подвижностью. Рост числа взаимных столкновений является причиной того, что при увеличении концентрации подвижность падает.

Подробности

Процесс электролиза или заряда аккумулятора

Такие процессы походи и обратные гальваническим элементам, так как тут не энергия попадает за счет реакции химического характера, а даже наоборот – химическая реакция будет происходить благодаря внешнему источнику электричества. В таком случае плюсом источника питания все еще будут называть катодом, а минус анодом. А вот контакты заряжаемого элемента гальваники или электроды электролизера уже способны носить противоположные наименования, и следует разобраться, почему.

Так как ток от положительного вывода источника питания будет поступать на положительный вывод аккумулятора – последний кстати уже не сможет быть катодом. Ссылаясь на сказанное выше, можно сделать выводы, что в таком случае аккумуляторные электроды при зарядке символически меняют местами. В таком случае через электрод заряжаемого элемента гальваники, в который втекает ток электричества, называют анодом. Итак, при зарядке плюс аккумулятора станет анодом, а минус будет катодом.

Гальванотехника

Процессы металлического осаждения в результате реакции химического типа под действием электрического тока (при процессе электролиза) называют гальванотехникой. Получается, что мир начал получать золоченные, посеребренные, хромированные или даже покрытые иными металлами украшения, а еще детали. Такой процесс применяют в роли декоративных, а еще в прикладных целях – для того, чтобы улучшать устойчивость к коррозии разных узлов и механизмов агрегатов. Метод работы действия установок для нанесения покрытия гальванического типа будет лежать в применении растворов солей элементов, которыми станут покрывать деталь, в роли электролита.

Определить, где анод, а где катод в гальванике тоже важно. Именно в этом случае анод будет являться электродом, к которому подключаются положительный вывод источника питания, а получается, катод в таком случае станет минусом

При этом металл будет осаждаться (восстанавливаться) на минусовом электроде (речь идет про реакцию восстановления). Получается, что есть вы желаете изготовить позолоченное кольцо собственноручно – подключите к нему отрицательный вывод блочка питания и поместите в емкость с требуемым растворителем.

В электронике

Ножки или электроды полупроводниковых, а еще вакуумных электронных устройств крайне часто называют катодом и анодом. Предлагаем рассмотреть условное обозначение графического типа полупроводникового диода по схеме. Как видите, анод у диода подключают до плюса батареи. Он так называется по той причине – в такой вывод у диода в любом случае будет втекать ток. На настоящем элементе на катоде будет маркировка в воде точки или полоски. Со светодиодом все аналогично, и на 0.5 см светодиодах внутренности видны через колбу. Та половина, что больше является катодом. Аналогичным образом будет обстоять ситуация даже с тиристором, назначение вывод и однополярное использование таких трехногих компонентов делает его управляемым диодом.

Как определить анод и катод

Определить, какой из электродов является анодом, а какой – катодом, на 1-й взор кажется легко. Принято считать, что анод имеет негативный заряд, катод – правильный. Но на практике могут появиться путаницы в определении.

Инструкция

1. Анод – электрод, на котором протекает реакция окисления. А электрод, на котором происходит поправление, именуется катодом.

2. Возьмите для примера гальванический элемент Якоби-Даниэля. Он состоит из цинкового электрода, опущенного в раствор сульфата цинка, и медного электрода, находящегося в растворе сульфата меди. Растворы соприкасаются между собой, но не смешиваются – для этого между ними предусмотрена пористая перегородка.

3. Цинковый электрод, окисляясь, отдает свои электроны, которые по внешней цепи двигаются к медному электроду. Ионы меди из раствора СuSO4 принимают электроны и восстанавливаются на медном электроде. Таким образом, в гальваническом элементе анод заряжен негативно, а катод – одобрительно.

4. Сейчас разглядите процесс электролиза. Установка для электролиза представляет собой сосуд с раствором либо расплавом электролита, в тот, что опущены два электрода, подключенные к источнику непрерывного тока. Негативно заряженный электрод является катодом – на нем происходит поправление. Анод в данном случае электрод, подключенный к правильному полюсу. На нем происходит окисление.

5. Скажем, при электролизе раствора СuCl2 на аноде происходит поправление меди. На катоде же происходит окисление хлора.

6. Следственно учтите, что анод – не неизменно негативный электрод, так же как и катод не во всех случаях имеет правильный заряд. Фактором, определяющим электрод, является происходящий на нем окислительный либо восстановительный процесс.

Диод имеет два электрода, называемые анодом и катодом. Он горазд проводить ток от анода к катоду, но не напротив. Маркировка, объясняющая предназначение итогов, имеется не на всех диодах .

Инструкция

1

Если маркировка имеется, обратите внимание на ее внешний вид и расположение. Она выглядит как стрелка, упирающаяся в пластину

Направление стрелки совпадает с прямым направлением тока, происходящего через диод. Иными словами, стрелке соответствует анодный итог, а пластине — катодный.

2. Аналоговые многофункциональные измерительные приборы имеют разную полярность напряжения, приложенного к щупам в режиме омметра. У некоторых из них она такая же, как в режиме вольтметра либо амперметра, у других — противоположная. Если она вам незнакома, возьмите диод, имеющий маркировку, переключите прибор в режим омметра, позже чего подключите к диоду вначале в одной, а потом в иной полярности. При варианте, в котором стрелка отклоняется, запомните, какой электрод диода был подключен к какому из щупов. Сейчас, подключая щупы в разной полярности к иным диодам, вы сумеете определять расположение их электродов.

3. У цифровых приборов в большинстве случаев полярность подключения щупов во всех режимах совпадает. Переключите мультиметр в режим проверки диодов — рядом с соответствующим расположением переключателя имеется обозначение этой детали. Алый щуп соответствует аноду, черный — катоду. В верной полярности будет показано прямое падение напряжения на диоде, в неправильной же индицируется бесконечность.

4. Если под рукой измерительного прибора нет, возьмите батарейку от материнской платы, светодиод и резистор на один килоом. Объедините их ступенчато, подключив светодиод в такой полярности, дабы светодиод светился. Сейчас включите в обрыв этой цепи проверяемый диод, экспериментально подобрав такую полярность, дабы светодиод засветился вновь. Итог диода, обращенный к плюсу батарейки — анодный.

5. Если при проверке обнаружится, что диод непрерывно открыт либо непрерывно закрыт, и от полярности ничего не зависит, значит он неисправен. Замените его, заранее удостоверясь в том, что его выход из строя не обусловлен неисправностью других деталей. В этом случае вначале замените и их.

Обратите внимание! Все перепайки исполняйте при обесточенной аппаратуре и разряженных конденсаторах. Диод проверяйте в выпаянном виде

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий