Аэрогель — происхождение, характеристики и области применения

Каков предельно допустимый уровень воздействия аэрогелевой пыли?

Стандарт Агенства по производственной безопасности и гигиене труда (АПБГТ) США для аморфного кремнезема- (80 мг/м³)/(%SiO2). Метод выборочного исследования 7501 Национального института профессиональной безопасности и здоровья США подсчитывает % SiO2 на основе процентного содержания кристаллического кремнезема в образце. Поскольку содержание кристаллического кремнезема в аэрогеле составляет 0%, пылевые лимиты АПБГТ 15 мг/м³ (общая пыль) и 5 мг/м³ (вдыхаемая пыль) относятся и к воздействию аэрогелевой пыли. Стандарт Национального института профессиональной безопасности и здоровья для аморфного кремнезема- 6 мг/м³. В Германии максимально допустимая концентрация – 4мг/м³ (вдыхаемые частицы пыли).

Состав

Структура аэрогеля является результатом золь-гель- полимеризации , когда мономеры (простые молекулы) реагируют с другими мономерами с образованием золя или вещества, состоящего из связанных, сшитых макромолекул с отложениями жидкого раствора между ними. Когда материал сильно нагревается, жидкость испаряется, и остается связанная сшитая структура макромолекул. Результатом полимеризации и критического нагрева является создание материала с пористой прочной структурой, который классифицируется как аэрогель. Вариации синтеза могут изменить площадь поверхности и размер пор аэрогеля. Чем меньше размер пор, тем более подвержен разрушению аэрогель.

Характеристики аэрогелевой теплоизоляции

Материал имеет нанопоры. Это существенно влияет на его вес. Среди свойств особенно выделяют: • небольшую плотность; • незначительную диэлектрическую проницаемость; • невысокую теплопроводность;

Отмечается большая удельная площадь поверхности. Такие характеристики позволяют считать утеплители из аэрогеля самыми лучшими. Продукт внедряется в военную, медицинскую, аэрокосмическую сферы. Сегодня особенно активно аэрогель используется в строительной области.

Нанопоры имеют такой диаметр, который не позволяет молекулам воздуха свободно двигаться. Они застывают в одном положении, защищая помещение от холодных или горячих воздушных потоков. Таким образом, статическое положение молекул предупреждает развитие конвекции, т.е. быстрое выветривание тепла.

Качество аэрогелевой изоляции во многом зависит от числа стенок пор. Чем их больше, тем утеплитель будет лучше удерживать тепло. Отмечается возможность материала задерживать его в самом себе. Продукт принадлежит к пожаробезопасным веществам. Гель относят к огнестойкому стандарту А1 класса. Что касается водонепрорицаемости, то ее степень достигает практически 100%. Поэтому при попадании на изделие воды теплоизоляционные качества утеплителя не ухудшаются. Это связано с возможностью материала отталкивать влагу. После попадания на поверхность она оседает, не проникая внутрь.

Структура продукта такова, что при существенном увеличении температуры она предупреждает спекание частиц. Особое пространственное строение также способствует медленной изнашиваемости прокладок. Высокая прочность – еще одна уникальная характеристика изделия. Оно способно сопротивляться разным видам растяжения. Отлично противостоит напряжению, которое происходит от усадки и температурных перепадов. Выдерживает воздействие неорганических растворителей.

Важно! Материал состоит только из веществ неорганического происхождения. В его структуре не обнаружены небезопасные для человека и окружающей среды компоненты. Специалисты отмечают незначительное испарение хлоридного иона во время эксплуатации

Однако, он не может нанести вред живым организмам и привести к развитию ржавчины техники или труб

Специалисты отмечают незначительное испарение хлоридного иона во время эксплуатации. Однако, он не может нанести вред живым организмам и привести к развитию ржавчины техники или труб.

Во время использования аэрогелевая теплоизоляция хорошо защищает помещение от внешних звуков и шумов благодаря структуре низкой плотности. Теплопроводность вещества колеблется от -250°С до 1200°С.

Структура. История. Свойства

Рассмотрим структура.

Аэрогели относятся к классу мезопористых материалов, в которых полости занимают не менее 50 %, а чаще всего, 90—99 % объёма, а плотность составляет от 1 до 150 кг/м3. По структуре аэрогели представляют собой древовидную сеть из объединённых в кластеры наночастиц размером 2—5 нм и пор размерами до 100 нм.

Теперь давайте рассмотрим история.

Первенство в изобретении признано за химиком Стивеном Кистлером (англ.)русск. из Тихоокеанского колледжа (англ.)русск. в Стоктоне, Калифорния, США, опубликовавшим в 1931 году в журнале Nature свои результаты. Кистлер заменял жидкость в геле на метанол, а потом нагревал гель под давлением до достижения критической температуры метанола (240 °C). Метанол уходил из геля, не уменьшаясь в объёме; соответственно, и гель «высыхал», почти не сжимаясь.

Далее рассмотрим детально свойства.

<-

На ощупь аэрогели напоминают легкую, но твёрдую пену, похожую на пенопласт. При сильной нагрузке трескается, но в целом это более чем прочный материал — образец аэрогеля может выдержать нагрузку в 2000 раз больше своего веса. Аэрогели, в характерные особенности кварцевые, — хорошие теплоизоляторы. Они также очень гигроскопичны. По внешнему виду кварцевые аэрогели полупрозрачны. За счёт рэлеевского рассеяния света на древовидных структурах они выглядят голубоватыми в отражённом свете и светло-жёлтыми в проходящем. Сходными оптическими свойствами обладают аэрогели на основе оксидов алюминия (Al2O3), циркония (ZrO2) и титана (TiO2). Аэрогели из других оксидов металлов могут иметь различный цвет и прозрачность; так, железооксидный непрозрачен и имеет цвет, сходный с ржавчиной, ванадиевооксидный непрозрачен, оливково-зелёного цвета; хромооксидный и имеет тёмно-зелёный либо тёмно-синий цвет, а аэрогели на основе оксидов редкоземельных металлов прозрачны (оксид самария жёлтый, оксид неодима фиолетовый, оксиды гольмия и эрбия — розовые). Углеродные аэрогели имеют глубокий чёрный цвет, поглощая 99,7 % падающего света.

Свойства и преимущества аэрогеля:

– высокая пористость. На 99,8%  состоит из воздуха,

– имеет рекорд по самой малой плотности у твердых тел — 1,9 кг/м³, это в 500 раз меньше плотности воды и всего в 1,5 раза больше плотности воздуха (кварцевые аэрогели),

– уникальный теплоизолятор. Имеет низкую теплопроводность – λ = 0,013 ~ 0,019 Вт/(м•К)  (в воздухе при нормальном атмосферном давлении) меньшую, чем теплопроводность воздуха (0,024 Вт/(м•К) (кварцевые аэрогели). Как утеплитель в 2-5 раз эффективнее традиционных утеплителей,

– температура плавления составляет 1200°C (кварцевый аэрогель),

– аэрогель является прочным материалом. Он выдерживает нагрузку в 2000 раз больше собственного веса,

– имеет низкий модуль Юнга,

– не сжимается, устойчив к деформации, имеет высокую прочность на растяжение,

– скорость распространения звука имеет самое низкое значение для твердого материала, что является важным преимуществом при создании шумоизоляционных материалов.Скорость звука в нем ниже скорости звука в газах,

– некоторые виды аэрогеля являются отличным сорбентом. Они в 7-10 раз эффективнее популярных современных сорбционных материалов,

– является устойчивым пористым веществом. Объем пор внутри аэрогеля в десятки раз превышает объем, занятый самим материалом. Данное свойство позволяет использовать аэрогель определенного состава в качестве катализатора в химических процессах с целью получения органических соединений. С другой стороны, его большая внутренняя емкость может быть использована для безопасного хранения определенных веществ, например, ракетного топлива, окислителя и пр.,

– отличная гидрофобность. Не впитывает влагу,

– обладает высокой жаропрочностью и термостойкостью. Имеет широкий рабочий температурный диапазон использования – от -200 °С  до +1000 (1200) °С. Без потерь сохраняет теплоизоляционные и механические характеристики при нагревании до не менее 1000°С,

– является негорючим материалом. Может использоваться также для огнезащиты различных конструкций,

– прозрачен (кварцевый аэрогель). Имеет показатель преломления света от 1,1 до 1,02. Из него можно изготавливать различные виды стекол,

– обладает достаточно высокой твердостью,

– долговечность,

– экологичен и безопасен для человека и окружающей среды,

– имеет большую удельную площадь внутренней поверхности. Она составляет порядка 300-1000 м2/г,

– химический состав аэрогеля можно регулировать, легко вводить в его состав различные добавки, что открывает новые возможности для его использования,

– устойчив к кислотам, щелочам, растворам,

– в тоже время является хрупким материалом.

Что такое нанотехнологии Aspen Aerogels?

Нанотехнологичность продуктов Aspen Aerogels заключается в мельчайших пустотах, включенных в гелевую матрицу аморфного кремнезема. Данные пустоты позволют достичь превосходных теплоизоляционных качеств утеплителей Aspen Aerogels. Частицы аэрогеля намного больше, чем нанометр (10⁻9 м). Поры (или воздушное пространство) в структуре аэрогеля – в пределах нанометра. Однако для того, чтобы разделить частицы аэрогеля, потребуется огромное количество энергии.

Согласно общепринятому определению, наночастицы- это дисперсивные частицы, в двух или трех измерениях больше чем 1 нм и меньше, чем 100 нм. Пять различных видов аэрогелевой пыли были протестированы независимой лабараторией с использованием лазерного рассеивателя Malvern Mastersizer 2000. Этот инструмент подсчитывает объемное распределение множества частиц от лазерного рассеивания. Итоги исследования показаны в таблице 1 и графике 1. Частицы размером менее 0,710 микрон (710 нм) не были обнаружены ни в одном из анализируемых образцов. Т.о. размер мельчайшей частицы аэрогеля более чем в 7 раз больше, чем самая большая наночастица.

Информация о размере частиц (Malvern)
Распределение размеров частиц

    0,71                7,096                   70,936           709,627

Размер частиц (мкм)

Что вам понадобится

  • Латексные либо резиновые перчатки
  • Защитные очки
  • Одежда с длинными рукавами
  • Закрытая обувь
  • Химический фартук

Сверхкритическая сушка

  • 2 шаровых клапана среднего давления 6,35 мм (1/4 дюйма) из нержавеющей стали марки 316
  • 2 шестигранных ниппеля 1,2 см (1/2 дюйма) на входе и 6,35 мм (1/4 дюйма) на выходе, длиной 1,7 см (1-11/16 дюйма), из нержавеющей стали марки 316
  • Шестигранных ниппель 1,2 см (1/2 дюйма)
  • 2 шестигранных ниппеля 6,35 мм (1/4 дюйма)
  • Патрубок диаметром 1,2 см (1/2 дюйма) из нержавеющей стали марки 316
  • Патрубок диаметром 6,35 мм (1/4 дюйма) из нержавеющей стали марки 316
  • Игольчатый клапан среднего давления с внутренней резьбой по обеим сторонам, диаметром 6,35 мм (1/4 дюйма), из нержавеющей стали марки 316
  • Латунный предохранительный пружинный клапан с вытяжным кольцом для контроля и выходом в атмосферу, внешней резьбой, диаметром 6,35 мм (1/4 дюйма)
  • Биметаллический термометр 1,2 см (1/2 дюйма) из нержавеющей стали марки 304 с внешней резьбой и бессмазочным циферблатом
  • Манометр на 0-20000 KПа, подсоединяемый сверху, с посадочным гнездом 6,36 мм (1/4 дюйма)
  • Нагреватель или фен
  • Лента для изоляции труб
  • Крестообразный патрубок
  • 9-килограммовый баллон с диоксидом углерода, клапаном и переходником CGA320

Силиконовый аэрогель

  • Тетраметоксисилан
  • Метанол
  • Деминерализованная вода
  • 28-30 вес. % раствор едкого аммиака в воде
  • Этанол (возможно)
  • Ацетон (возможно)

Получение силиконового аэрогеля субкритической сушкой

  • Подготовленный силиконовый гель
  • Чистый этанол либо ацетон
  • Гексан
  • Триметилхлорсилан (ТМХС)
  • Химически стойкая банка или бутылка с широким горлышком
  • Электроплита
  • Химическая вытяжка
  • Гексаметилдисилазан

Аэроге́ли (от лат. aer — воздух и gelatus — замороженный) — класс материалов, представляющих собой гель, в котором жидкая фаза полностью замещена газообразной, вследствие чего вещество обладает рекордно низкой плотностью, всего в полтора раза превосходящей плотность воздуха, и рядом других уникальных качеств: твердостью, прозрачностью, жаропрочностью, чрезвычайно низкой теплопроводностью и отсутствием водопоглощения.

  • https://m-strana.ru/articles/aerogel-eto/
  • https://stroyday.ru/stroitelstvo-doma/yteplenie-doma/aerogel-proisxozhdenie-xarakteristiki-i-oblasti-primeneniya.html
  • https://ruscos.ru/kak-sdelat-aerogel-v-domashnih-usloviyah-silikatnyi-aerogel-domashnei/
  • https://nplus1.ru/material/2016/12/02/aerogel-and-its-characteristics

Эффективность при ремонте

Теплоизоляционные материалы Aspen Aerogels эффективны при проведении ремонтных работ по монтажу теплоизоляции трубопроводов и оборудования поверх поврежденного изоляционного покрова.

Применение теплоизоляционных материалов Aspen Aerogels поверх существующей конструкции позволит обеспечить проектные значения теплового потока. 

Новый защитно-покровный слой (ЗПС) защищает конструкцию от воздействия погодных факторов. 

При использовании данного метода ремонта система ремонтируется быстро, дешево и легко.

Двухэтапное восстановление: Удержание тепла. Сушка изоляции.

PyrogelXT ограничивает:

  • значение теплового потока и температуру на поверхности изоляции;
  • нагрев основного теплоизоляционного материала.

Если изоляционный материал влажный, большая часть влаги из него выводится через стыки в ЗПС.

Сочетание проницаемости и гидрофобности PyrogelXT обеспечивает выход водяного пара.

Таким образом, применение аэрогеля для изоляции трубопроводов тепловых сетей, утепленных ранее другим утеплителем, возможно без производства работ по его демонтажу.

Виды аэрогелевого утеплителя

Для строительных нужд продукт выпускается в виде рулонов. Это стекловолокнистый материал, который содержит в себе порошок из аэрогеля. На свойства теплоизолятора влияют: • химический состав материала; • структура основы; • внешнее покрытие изделия.

Выделяют несколько типов аэрогелевых утеплителей. Классификация учитывает температуру применения продукта. Чаще всего используют кремниевые изоляторы с незначительным введением оксида алюминия. Такие материалы могут выдерживать до 450°С. Есть компоненты, которые не боятся температуру в 700°С. Для получения такого продукта прибегают к добавке оксида титана. При увеличении теплотворных показателей у аэрогеля начнут ухудшаться другие важные параметры. Это связано с окислением вещества.

Выпускают композиции и для низких температур. Они обладают многослойной структурой. Качество паропроницаемости у таких материалов отсутствует. Их активно применяют для утепления холодных помещений. Показатели аэрогеля не ухудшатся даже при достижении области абсолютного нуля.

Сегодня производители предлагают несколько видов энергоэффективных изоляторов. Пирогель – материал для утепления промышленных трубопроводов, техники, работающей с высокой температурой. Криогель предназначен для утепления труб и техники, работающей с низкими температурами. Спейслофт создан экспертами для изоляции конструкций, расположенных в разных климатических условиях.

Обособленно в группе теплоизоляторов стоит Спейслофт Сабси. Данный материал используют для утепления системы типа «труба в трубе», которая находится на большой глубине. Чехлы съемные применяют для изоляции промышленных установок, работающих с высокими температурами. Цена теплоизоляции с аэрогелем зависит от ее назначения и толщины. Материал позволяет решать различные задачи. Он утепляет конструкции любых размеров. Кроме трубопроводов, прокладка используется при монтаже: • емкостей: • запорно-регулирующей арматуры; • приборов, контролирующих производственных процессы. Продукт применяют для утепления систем внутри помещения.

  Фактурная краска: состав, преимущества и недостатки, особенности нанесения

Плюсы и минусы аэрогелевой изоляции

Среди достоинств утеплителя выделяют: • незначительную теплопроводность; • гидрофобность; • универсальность; • стабильность к деформациям. Изделия возможно применять в разных конструкциях и в сочетании с любыми строительными материалами.

Несмотря на вышеперечисленные положительные стороны, аэрогель имеет один существенный недостаток. Изоляция не выдерживает открытой кислородной среды. Попадая в нее вещество мгновенно растворяется.

На сегодняшний день уже есть позитивные отзывы о теплоизоляции аэрогелем. Отечественный институт, занимающийся научными исследованиями, активно использует инновационное изделие листового типа для внутреннего и внешнего утепления в оборудованиях. При этом температура агрегата достигает 310°С.

Это интересно: Время собирать урожай — новые устройства для сбора фруктов

Цель проекта

Проект предлагает создание промышленного производства наноструктурного аэрогеля AlOOH (1 т/год) по уникальной жидкометаллической технологии, разработанной в ГНЦ РФ – ФЭИ (Обнинск). В результате реализации проекта будет создана компания мирового уровня по производству наноматериала, являющегося эффективным технологическим компонентом-модификантом для изготовления нового поколения керамик (сенсорных, конструкционных), сорбентов, резинотехнических изделий, тепловой изоляции, существенно превосходящих предыдущие поколения рассматриваемых изделий по эксплуатационным характеристикам.

Какие исследования аморфного кремнезема проводились в области здравоохранения?

Организация Объединенных Наций по Экономическому Сотрудничеству и Развитию (ООНЭСР) изучает опасные свойства химических веществ, производимых в больших объёмах.Результаты исследований синтетического аморфного кремнезёма (САК) были опубликованы в 2004 году. Согласно заключению экспертизы, САК не приоритетен для дальнейшего исследования. Отрывки из отчета о воздействии САК на здоровье человека приведены ниже:Впитывание, накопление, выведение: формы аморфного кремнезема быстро выводятся из легких во время и после длительного вдыхания лабораторными животными, в то время как кристаллические формы кремнезема демонстрируют ярковыраженную тенденцию накапливаться и оставаться в легких и лимфатических узлах. Впитывание в кишечнике САК у людей и животных наблюдается незначительное. Есть свидетельство выведения биодоступных частиц через почки.

Кратковременный токсический эффект: Опыты на крысах, вдыхающих высокие концентрации САК (от 140 до ~ 2000 мг/м³) не вызвали смертельных исходов. Пероральный прием аморфного кремнезема и аморфных силикатов а также контакт с кожей не привели к смертности даже в самых высоких дозах: диапазон LD0 значений от 3300 до 20000 мг/кг.

Раздражение и аллергические реакции: САК и силикаты не раздражают кожу и глаза в экспериментальных условиях, но могут вызывать сухость при длительном и регулярном использовании.

Несмотря на то, что, эксперименты по изучению аллергических реакций на САК и силикаты не проводились, однако, длительный опыт использования данных материалов говорит о том, что за последние 50 лет у САК не выявлено потенциала для аллергических реакций кожи. Как было сказано выше, есть отчеты, описывающие сухость и раздражение кожных покровов, которые могут ошибочно приниматься за аллергию. Медицинские наблюдения рабочих, собранные за демятки лет, не дали никаких доказательств появления кожной аллергии. Агентство по охране окружающей среды США (АОС США) рассмотрело ряд исследований токсичности синтетического аморфного кремнезёма в том числе четыре исследования критической токсичности (исследование на острую интоксикацию LD50 у крыс, тест на вдыхание LC50 у крыс, первичное раздражение глаз кроликов и первичные кожные раздражения у кроликов). Краткое содержание результатов исследования Агентства по охране окружающей среды США изложены ниже:

1. Исследования критической токсичности. В результате исследований последствий вдыхания  и применения внутрь САК смертности не наблюдалось. По первичному раздражению глаз: не было помутнения роговицы или раздражения радужной оболочки глаза. По воздействию на кожу: в течение 72-часового исследования не наблюдалось раздражения кожных покровов.По изучению кратковременного токсического эффекта: при употреблении внутрь LD50 составляет: 5000 мг/кг.По изучению воздействия САК при вдыхании: LC50 составляет: 2,08 мг/л. Все исследования были проведены с учётом IV категории токсичности. 2. Исследования на мутагенность. Во всех четырех исследованиях не было никаких признаков любой мутагенной активности, связанной с воздействием САК. 3. Пероральная токсичность. Не выявлено смертельных исходов или клинических симптомов. Не было существенной разницы между группой испытуемых и контрольной группой в плане концентрации кремнезема в организме.

Опираясь на анализ вышеперечисленных исследований, АОС США пришло к следующим заключениям: Кремнезем аморфный, пирогенный, (некристаллический) имеет доказанное отсутствие токсичности. По результатам исследования кратковременного токсического эффекта причислен к категории токсичности ІV. Результат на мутагенность отрицательный. Кремнезем аморфный, пирогенный, (некристаллический) не классифицируется по его канцерогенности, однако при его аморфной структуре, он не может представлять онкогенного риска. Считается, что кремнеземы инертны при проглатывании, и в связи с большим молекулярным весом они не могут впитываться через кожу. Относительно здоровья человека не должно быть беспокойства, независимо от того, каким по продолжительности был контакт с САК.

Воздействие синтетического аморфного кремнезема на здоровье существенно отличается от воздействия кристаллического кремнезёма. В результате эпидемиологических исследований длительного преднамеренного воздействия САК на работающих с данным материалом сотрудников силикоз не наблюдался. Исследования на различных видах животных показали, что продукты аморфного кремнезема полностью выводятся из лёгких. Международное Агенство по исследованию рака признает САК не онкогенным для здоровья человека (3 группа).

Использует

В зонде Stardust использовался пылесборник, состоящий из блоков аэрогеля.

Аэрогель может выполнять несколько функций. В коммерческих целях аэрогели в гранулированной форме комбинируют со стеклом, чтобы уменьшить их тепловые потери. После нескольких пребываний в Vomit Comet исследовательская группа обнаружила, что при производстве аэрогеля в условиях невесомости образуются частицы, которые имеют более однородный размер и которые уменьшают эффект рассеяния Рэлея в аэрогелях кремнезема, таким образом, аэрогель становится более прозрачным. Прозрачные аэрогели из диоксида кремния вполне могут быть подходящими для уменьшения потерь тепла через окна в зданиях .

Благодаря большой площади поверхности он часто используется, например, в химическом поглотителе для адсорбции . Эта способность также дает ему большой потенциал в качестве катализатора и транспортера катализатора . Частицы аэрогеля также используются в качестве загустителя в красках и косметике .

Его характеристики могут быть увеличены для конкретных применений путем добавления «легирующих добавок», тем самым укрепляя его структуры и смешивая его составы. Используя этот подход, можно значительно расширить область применения.

Производство аэрогелевых пластин коммерческого назначения началось в 2000-х годах . Эта пластина представляет собой армированный волокном композитный материал с силикагелем и аэрогелем, который превращает аэрогель в прочный и гибкий материал. Механические и термические свойства продукта варьируются в зависимости от выбора волокон, аэрогелевой формы и включенных непрозрачных добавок.

В январь 2004 г., зонд Stardust использует аэрогель для улавливания пыли от кометы Wild 2 . Эти частицы пыли испаряются при столкновении с твердыми частицами и проходят через газы, но улавливаются аэрогелем. NASA также используется аэрогель для защиты скафандры носили астронавты .

В октябрь , Bouygues Construction и немецкий химик BASF подписали соглашение об инновационном партнерстве с целью совместной разработки приложений в области изоляции зданий для изделий на основе полиуретанового аэрогеля , получившего название «Slentite». Очень низкая теплопроводность материала, менее 0,016  Вт м -1  К -1 , делает возможным заменить традиционный изолятор, например, минеральной ваты или полистирола, от 25 до 50%, обеспечивая при этом Гигротермальные регулирование внутренней среды . Среди других достоинств материала представлены7 октября 2014 г., простота резки без пыли и высокая механическая стойкость продукта. Крупномасштабных приложений пока нет, но BASF надеется найти пилотную площадку в 2015 году.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий