Отопление дома тепловым насосом: Система земля – вода и воздух – вода, а также вода – вода

Достоинства и недостатки технологии

Важнейшими преимуществами ТН являются:

  1. Экономичность: на каждый киловатт потребленной электроэнергии ТН выдает на-гора от 3 до 5 кВт тепла. То есть речь идет о практически дармовом отоплении.
  2. Экологичность и безопасность: работа ТН не связана с образованием и выбросом в атмосферу каких-либо опасных для экологии веществ, а отсутствие пламени делает эту технологию абсолютно безопасной.
  3. Простота эксплуатации: в отличие от газовых и твердотопливных котлов ТН не нужно чистить от сажи и копоти. Так же не придется сооружать и обслуживать дымоход.

Существенный недостаток данной технологии – высокая стоимость оборудования и монтажных работ.

Приведем простой расчет. Для дома площадью 120 кв. м понадобится ТН производительностью 120х0,1 = 12 кВт (из расчета 100 Вт на 1 кв. м). Модель Diplomat от компании Thermia с такой производительностью стоит около 6,8 тыс. евро. Несколько дешевле обойдется модель DUO того же производителя, но и ее стоимость нельзя назвать демократичной: около 5,9 тыс. евро.

Тепловой насос Thermia Diplomat

Даже если сравнивать с самым дорогим видом традиционного отопления – электрическим (по 4 руб. за 1 кВт*ч, 3 месяца – работа с полной загрузкой, 3 месяца – с половинной), окупаемость займет более 4-х лет, и это без учета стоимости монтажа наружного контура. На деле же ТН не всегда работает с расчетной производительностью, соответственно, и срок окупаемости может оказаться более продолжительным.

Применение геотермальных насосов в условиях российского климата

Теперь вы знаете, чем отличаются типы тепловых установок, и сможете правильно определить, какой именно необходим в вашем случае. Воздушный тип пригоден для регионов, где температура не опускается ниже нуля. Это отличный способ организовать отопление дачи тепловым насосом, если собственник проводит там досуг с семьей с весны по осень. На зиму систему консервируют. В Сибири, Северных регионах, и даже в Европейской части России об отоплении зимой воздушными агрегатами не стоит и помышлять.

Водяные также не подойдут людям, живущим в условиях вечной мерзлоты. Здесь вода в грунте есть, но она находится в виде льда, а значит, не может служить источником тепла. На юге Российской Федерации, где глубина промерзания грунта невелика, а подземные реки и озера залегают неглубоко, такие устройства вполне жизнеспособны и достаточно эффективны. А вот геотермальные – универсальный вариант, и поэтому является самым востребованным на всей территории РФ, несмотря на трудоемкость организации зонда или коллектора.

Принцип работы теплового насоса

Принцип работы теплового насоса

Согласитесь: все вышеупомянутые достоинства теплового насоса выглядят несколько фантастично. Особенно КПД на уровне 300-500 процентов. Однако, все достоинства тепловых агрегатов – это не вымысел, а угрожающая энергетическим компаниям реальность.

Секрет подобной эффективности кроется в оригинальном принципе работы насоса, который, в кратком изложении, заключается в следующем: циркулирующая по трубам среда отбирает тепло у источника с низким потенциалом (воздух, грунт, скальные породы, вода) и сбрасывает его в выбранной потребителем точке.

То есть, перед нами «вывернутый» холодильник: отбирающий тепло у потенциальных источников с помощью испарителя и отдающий энергию потребителю посредством конденсатора.

Подробная схема работы

В итоге, при более детальном рассмотрении схема работы тепловых агрегатов выглядит следующим образом:

Схема теплового насоса

  • На глубине 5-6 метров в грунте монтируют циклический трубопровод с теплоносителем, в который встроен особый радиатор – испаритель. Причем эта глубина выбрана не случайно – на такой отметке температура держится выше нуля в любое время года.
  • К испарителю подводят второй трубопровод с залитым хладагентом. Под высоким давлением хладагент вскипает даже при одном градусе Цельсия. Причем процесс испарения, как известно из школьного курса физики, сопровождается поглощением энергии, отбираемой у циркулирующего в грунте теплоносителя.
  • Пары хладагента выкачиваются из трубопровода компрессором, который не только транспортирует эту среду по арматуре, но и генерирует еще большее давление, провоцирующее дополнительный разогрев хладагента.
  • Далее перегретые пары хладагента закачиваются (тем же компрессором) в конденсатор, где происходит трансформация агрегатного состояния вещества (пар превращается в жидкость). А все те же основы термодинамики утверждают, что при конденсации газообразной среды происходит выделение энергии.
  • Выделенное тепло, генерируемое в конденсаторе, поглощает уже третий трубопровод – система теплоснабжения жилища. То есть конденсатор выступает в роли газового или электрического котла. Ну а вернувшийся в жидкое состояние хладагент возвращается к испарителю, проходя сквозь регулирующий дроссель.

Схемы циркуляции теплоносителей

При работе теплового насоса (ТН) используется три замкнутых контура, по которым циркулируют различные жидкости/газы — теплоносители. Каждый из них выполняет свои функции.

Контур съема потенциала энергии источника

При заборе тепла воздуха используется искусственный обдув корпуса испарителя воздушными потоками от вентиляторов.

Замкнутый цикл жидкого теплоносителя для передачи тепла водной среды или земли осуществляется по трубопроводам, которые соединяют змеевик испарителя с коллектором, утопленным на дно водоема либо заглубленным в землю на расстояние, превышающее промерзание грунта в сильные холода.

В качестве теплоносителя применяются незамерзающие жидкости на основе разбавленных водных растворов спирта. Их принято называть «антифризы» или «рассолы». Они под влиянием более высокой температуры (≥+3ºС) поднимаются к испарителю, передают ему тепло, а после охлаждения (≈-3ºС) самотеком направляются назад к источнику энергии, обеспечивая непрерывную циркуляцию.

Внутренний контур

По нему циркулирует хладагент на основе фреона, «поднимая» тепло на более высокий уровень. Под действием температуры он последовательно переходит в газообразное и жидкостное состояние.

В состав внутреннего контура входят:

  • испаритель, забирающий энергию от рассолов и передающий ее фреону, который при этом закипает и становится разреженным газом;
  • компрессор, сжимающий газ до высокого давления. При этом резко увеличивается температура фреона;
  • конденсатор, в котором горячий газ передает свою энергию теплоносителю выходного контура, а сам остывает, переходя в жидкое состояние;
  • дроссель (расширительный клапан), редуцирующий фреон за счет перепада давления до состояния насыщенного пара для поступления в испаритель. При прохождении хладагента через узкое отверстие давление теплоносителя падает до начального значения.

Выходной контур

Здесь циркулирует вода. Она обогревается в змеевике конденсатора для использования в обычной жидкостной системе отопления. При этом способе ее температура достигает порядка 35ºС, что обусловливает ее применение в системе «Теплый пол» с длинными магистралями, позволяющими равномерно передавать генерируемую энергию всему объему помещения.

Использование только радиаторов отопления, создающих меньшие объемы теплообмена с пространством комнат, не так эффективно.

Рабочая жидкость в установке грунтового теплового насоса.

Ранее, в системах проводящих тепло из грунта, был использован раствор соли NaCl, отсюда и возник сегодня термин – соляные насосы. «Солянки» давно уже не применяются. Самым популярным является водный раствор пропиленгликоля, считающийся экологичным. Как правило, именно он рекомендуется для заполнения – он может покупаться, как готовая рабочая жидкость для такого использования. При его выборе необходимо руководствоваться рекомендациями производителя теплового насоса, так как жидкость может содержать различные добавки ингибиторов, стабилизаторов, антиоксидантов.

Пропиленгликоль имеет не только достаточно низкую температуру застывания, но и не вызывает коррозии металлов, не растворяет пластик и не вызывает размывания насосов. Тем не менее, его плотность и вязкость, положительно влияющие на количество энергии, необходимой для прокачки, больше, чем воды, поэтому его используют в не очень большой концентрации (34%). Есть, конечно, много жидкостей, которые не замерзают при температуре -15 градусов Цельсия. Часто используется также раствор этиленгликоля, но он считается вредным для окружающей среды, потому что ядовитый и не подвергается биологическому разложению.

Хорошие свойства имеет также этанол. Его самое большое преимущество — это низкая вязкость и плотность, благодаря чему его прокачка поглощает меньше энергии. Применение его не является популярным из-за его воспламеняемости, интенсивного запаха, и, в первую очередь, отсутствия смазочных свойств, что грозит повреждением циркуляционного насоса. Поэтому некоторые производители запрещают его использование.

Советы и рекомендации

Тепловой насос – оборудование технически сложное и достаточно дорогое, поэтому подходить к его выбору следует с большой ответственностью. Чтобы не быть голословными, приведем несколько вполне конкретным рекомендаций.

1. Никогда не приступайте к выбору теплового насоса без предварительного проведения расчетов и создания проекта. Отсутствие проекта может стать причиной фатальных ошибок, исправить которые можно будет лишь с помощью огромных дополнительных финансовых вложений.

2. Доверить проектирование, монтаж и сервисное обслуживание теплового насоса и системы отопления следует только профессионалам. Как убедиться в том, что в данной компании работают профессионалы? В первую очередь, по наличию всей необходимой документации, портфолио реализованных объектов, сертификатов от поставщиков оборудования. Очень желательно, чтобы весь комплекс необходимых услуг предоставляла одна компания, которая в данном случае будет нести полную ответственность за реализацию проекта.

3. Советуем вам отдать предпочтение тепловому насосу европейского производства. Пусть вас не смущает тот факт, что он дороже китайского или российского оборудования. При включении в смету стоимости работ по монтажу, запуску и отладке всей системы отопления разница в цене насосов будет практически незаметна. Но зато, имея в своем распоряжении «европейца», вы будете уверены в его надежности, поскольку высокая цена насоса – это лишь результат использования при его создании современных технологий и высококачественных материалов.

Преимущества и недостатки ↑

Тепловые насосы, несомненно,  обладают рядом преимущественных достоинств перед другими устройствами для отопления.

Преимущества

  1. Экологически чистый вид отопления. Не используются горючие материалы, нет продуктов сгорания и выбросов в атмосферу.
  2. Экономичность. Позволяет экономить на сырье и коммунальных платежах.
  3. Универсальность. Возможность использовать в любом месте, так как тепло всегда присутствует в окружающей среде.
  4. Автоматическая работа.
  5. Безопасность. При отоплении не происходит процесс горения, не используются горючие вещества, отсутствует опасность выброса в атмосферу опасных выделений.
  6. Эффективность. Возможность использовать тепловую энергию для нагрева контура горячего водоснабжения. Возможность использования в качестве кондиционера в летний период.
  7. Длительный срок службы.

Но насосы также имеют и свои недостатки, не без этого:

Недостатки

  1. Высокая стоимость оборудования (и установки тоже).
  2. Не вдруг найдешь профессионалов, способных правильно произвести расчет и подбор оборудования, а также произвести монтаж.
  3. Не всегда есть техническая возможность установки теплового насоса.

Принцип работы теплонасосной системы теплоснабжения

В испарителе теплового насоса тепло невысокого температурного потенциала отбирается от источника низкотемпературного тепла и передается низкокипящему рабочему телу теплового насоса (рис. 6). Полученный пар сжимается компрессором. При этом температура пара повышается и тепло на нужном температурном уровне в конденсаторе передается в систему отопления и/или горячего водоснабжения. Для того чтобы замкнуть цикл, совершаемый рабочим телом, после конденсатора оно дросселируется до начального давления, охлаждаясь до температуры ниже источника низкопотенциального тепла, и снова подается в испаритель.

Рис. 6. Схема работы системы теплоснабжения на основе теплового насоса

Точка кипения для разных жидкостей меняется посредством давления, чем выше давление, тем выше точка кипения. Вода закипает при нормальном давлении при температуре +100 °С. При повышении давления вдвое температура кипения воды достигает +120 °С, а при уменьшении давления в 2 раза вода закипает при +80 °С. Хладагент в тепловом насосе имеет ту же тенденцию: его температура кипения меняется при изменении давления. Точка кипения хладагента лежит низко, приблизительно – 40 °С при атмосферном давлении, поэтому может использоваться даже с низкотемпературным тепловым источником.

Таким образом, тепловой насос осуществляет трансформацию тепловой энергии с низкого температурного уровня на более высокий, необходимый потребителю. При этом на привод компрессора затрачивается электрическая энергия. Однако при наличии подходящего источника низкопотенциального тепла его количество, поставляемое потребителю, в несколько раз превышает затраты на привод компрессора. Отношение полезного тепла к работе компрессора называется коэффициентом преобразования теплового насоса, и в наиболее распространенных теплонасосных системах он достигает величины 3 и более. Температурный уровень теплоснабжения от тепловых насосов – 35–60 °С.

Экономия дорогих энергетических ресурсов при таком температурном режиме достигает 75 %.

Теоретический коэффициент преобразования (ε) идеального теплового насоса рассчитывается по формуле Карно:

ε = Т2/( Т21),

21

Если бы тепловой насос работал по идеальному циклу, то при температуре кипения +5 °С (Т1 = 278 К) и при температуре конденсации 55 °С (Т2=328 К) он мог бы работать с коэффициентом преобразования, равным 6,56. На самом деле коэффициент преобразования будет меньше, так как полностью идеальных тепловых машин не бывает.

Обычно внутри теплового насоса, как и в холодильнике, циркулирует хладагент. На современное этапе используются хладагенты, который не содержат хлоруглеводородов и других, вредных для здоровья человека и окружающей среды компонентов.

Способы размещения наружного контура

Существует несколько вариантов размещения наружного контура:

  1. В грунте горизонтально: трубы укладываются «змейкой» с шагом около 1 м на глубине, превышающей глубину промерзания грунта. Длина контура определяется из расчета 20 – 30 Вт потребной тепловой мощности на 1 м.п. Устройство такого контура не потребует специальных навыков, но под него придется отвести довольно большой участок.
  2. В грунте вертикально: трубы наружного контура помещают в скважины глубиной до 200 м. В этом случае с 1-го м.п. удается получить уже 50 Вт тепла. Построить вертикальный контур самостоятельно невозможно, придется приглашать бурильщиков. Но у него есть и преимущество: уходя вглубь, вы сэкономите изрядную часть собственной территории.
  3. В водоеме: при наличии водоема – самый предпочтительный вариант, так как отпадает необходимость производства земляных работ. Трубы контура укладывают на дне спиралью и прижимают грузом. Производительность по теплу – около 30-40 Вт/м.п.
  4. На воздухе: в этом случае, как уже говорилось, наружный контур вовсе отсутствует. Испаритель необходимо закрепить на улице, установив рядом с ним вентилятор.

Движение рабочей среды в наружном контуре обеспечивается циркуляционным насосом.

Самодельный тепловой насос

Проведенные исследования показали, что срок окупаемости оборудования напрямую зависит от отапливаемой площади. Если речь идет о доме в 400 квадратных метров, то это примерно 2-2,5 года. А вот для тех, кто имеет жилье площадью поменьше, вполне можно использовать самодельные насосы. Может показаться, что сделать такое оборудование сложно, но на самом деле это несколько не так. Достаточно закупить необходимые комплектующие, и можно приступать к монтажу.

Первым делом приобретается компрессор. Можно взять такой, какой на кондиционере. Монтируют его аналогичным образом на стену здания. Помимо этого, нужен конденсатор. Его можно соорудить самостоятельно или же купить. Если пойти первым методом, то понадобится медный змеевик толщиной не менее 1мм, его помещают в корпус. Это может быть подходящий по габаритам бак. После монтажа бак сваривается, и делаются нужные резьбовые соединения.

Как работает тепловой насос

Конструкцию «умножителя тепла» предложил еще в 1852 году лорд Кельвин. В его работе использовался основной принцип теплового насоса – постепенный отбор низкотемпературного тепла, его накопление и отдача в виде энергии с высокой температурой. Данный процесс был описан «циклом Карно» в далеком 1824 году.

С тех пор прошло немало лет, а с тепловым насосом сейчас знаком каждый ребенок и стоит он на любой кухне. Вы не ослышались, ведь ваш холодильник – это тот же тепловой насос, только работающий в других целях. Вы ведь замечали, как нагревается задняя стенка холодильника? А задумывались ли вы о том, что его повышенная температура – не что иное, как тепло, отобранное агрегатом у продуктов, которые вы загрузили в него после похода в супермаркет.

Принцип действия теплового насоса

Похожим образом функционирует и тепловой насос. Основным его элементом является мощный компрессор, позволяющий создавать высокое давление. К нему присоединен испаритель – радиатор из тонких трубок с высокой теплопроводностью. При работе компрессор нагнетает теплоноситель, в роли которого выступает хладагент. Это вещество способно кипеть и испаряться при низкой температуре. Компрессор создает давление в десятки атмосфер, поэтому хладагент испаряется даже при отрицательных температурах. На входе в испаритель сечение трубопровода уменьшается до диаметра в десятые доли миллиметра, происходит распыление хладагента и он переходит из жидкой фазы в газообразное состояние, при этом поглощая тепло.

Далее на пути теплоносителя установлен конденсатор, в котором хладагент отдаёт тепло радиатору, охлаждается и снова превращается в жидкость, а затем возвращается в компрессор. Такой цикл повторяется многократно. При этом доля энергии, которую потребляет компрессор теплового агрегата, составляет около 20% от производимого им количества теплоты. Остальные 80% он «заимствует» у окружающей среды. Так как тепловой энергией обладает любой предмет, имеющий температуру выше абсолютного нуля, отобрать эту энергию можно при условии, что температура рабочего тела будет еще ниже. С этой ролью отлично справляются современные хладагенты.

Тепловую энергию насос может брать как из геотермальных источников, так и из атмосферы

Важной особенностью современных агрегатов является возможность работы не только на обогрев, но и на кондиционирование помещения в тёплое время года

Современные тепловые насосы – высокотехнологичные агрегаты

Применение для охладительных систем

Большим преимуществом термонасосов является то, что это оборудование может не только отапливать здание, но и охлаждать помещение.

Конструктивное решение возможности охлаждения зачастую интегрировано в теплонасос изначально, на этапе производства, и почти у всех изготовителей существую модели насосов, которые умеют кондиционировать дом (функция Natural Cooling).

Если насосное оборудование не имеет эту возможность, то его можно переделать. Для этого дополнительно потребуется смонтировать гидравлическую развязку, которая устанавливается вне насоса. Этот вариант не потребуют значительных капиталовложений.

Подавать генерируемый холод в здание можно различными способами. Такую функцию можно возложить на охлаждающие панели, устанавливаемые на поверхности стен, «холодный» теплый пол, отопительные радиаторы или фанкойл — агрегат, где в корпусе находится обдуваемый с помощью вентилятора теплообменник.

Компоненты системы отопления на тепловом насосе

Компрессор — сердце системы отопления на тепловом насосе. Он концентрирует рассеянное низкопотенциальное тепло, повышая его температуру за счет сжатия, и передает теплоносителю в систему. При этом электроэнергия тратится исключительно на сжатие и перенос тепловой энергии, а не на нагрев теплоносителя — воды или воздуха. По усредненным подсчетам, на 10 кВт тепла тратится до 2,5 кВт электричества.

Накопительный бак для горячей воды (для инверторных систем). Аккумулирующий бак накапливает воду, выравнивающую тепловые нагрузки отопительной системы и ГВС.

Хладагент. Так называемое рабочее тело, находящееся под низким давлением и кипящее при низких температурах, поглотитель низкопотенциальной энергии источника тепла. Это газ, циркулирующий в системе (фреон, аммиак).

Испаритель, обеспечивающий отбор и передачу тепловой энергии насосу из низкотемпературного источника.

Конденсатор, передающий тепло от хладагента воде или воздуху в системе.
Терморегулятор.

Первичный и вторичный грунтовый контур. Передающая тепло от источника к насосу и от насоса в домашнее отопление циркуляционная система. Первичный контур состоит из: испарителя, насоса, труб. Вторичный контур включает в себя: конденсатор, насос, трубопровод.

Тепловой насос воздух-вода 5-28 кВт Тепловой насос воздух-вода на отопление и ГВС 12-20 кВт Тепловой насос для горячего водоснабжения бытовой 185 кВт Тепловой насос воздух-вода 132 кВт Низкотемпературный тепловой насос воздух-вода 10-80 кВт с режимом работы при 25 градусов и СОР 4,3

Принцип работы теплового насоса заключается в поглощении и последующем выделении тепловой энергии в процессе испарения и конденсации жидкости а так же в смене давления и последующем изменении температуры конденсации и испарения.

Тепловой насос изменяет движение тепла — заставляет двигаться в обратном направлении. То есть ТН тот же гидравлический, перекачивающий жидкости снизу-вверх, вопреки природному движению сверху-вниз.

Хладагент подвергается сжатию в компрессоре и передается конденсатору. Высокое давление и температура конденсирует газ (фреон чеще всего), тепло передается теплоносителю в систему. Процесс повторяется, когда хладагент проходит испаритель снова — давление снижается и запускается процесс низкотемпературного кипения.

В зависимости от источника низкопотенциального тепла, каждый вид насосов имеет свои нюансы.

Типы тепловых насосов

Рассмотрим рабочие характеристики и типы тепловых насосов. Что касается условий эксплуатации, их можно использовать в достаточно широком температурном диапазоне от -30 °С до +35 °С. Наиболее распространенными считаются компрессионные и абсорбционные насосы. Первые обеспечивают циркуляцию в системе за счет механической и электрической энергии, вторые переносят тепло с помощью самого источника тепла. Абсорбционные насосы более экономичные, но имеют более сложную конструкцию и стоят дороже.

В зависимости от типа источника тепла тепловые насосы можно поделить на:

  • геотермальные, забирающие тепло земли или воды (грунтовых вод, водоемов и т.д.);
  • воздушные, забирающие тепло воздуха;
  • насосы вторичного тепла, забирающие тепло, которое выделяется при отоплении, рабочих процессах на производстве и т.д. Обычно такие насосы используются именно на производствах, где есть источники «ненужного» тепла.

В качестве теплоносителя в тепловых насосах может использоваться вода, воздух, грунт или их комбинации.

Геотермальные тепловые насосы бывают замкнутыми и открытыми. Открытые системы используются для нагрева воды, которая попадает в контур, нагревается и выводится наружу. Использовать такую систему можно, если поблизости есть достаточно большой источник воды с достаточным объемом. Кроме того, вода, прошедшая через систему, не должна загрязнять окружающую среду, а ее выброс нужно согласовывать с государственными учреждениями.

Более предпочтительными являются замкнутые системы, которые тоже можно поделить на несколько типов:

  • с горизонтальным расположением коллектора, когда он монтируется в выкопанной в земле траншее ниже уровня промерзания грунта. В зависимости от климата и типа грунта глубина монтажа коллектора может меняться, в среднем же она составляет порядка 1,5 м. Для увеличения площади и объема контура при сокращении затраченной площади коллектор лучше укладывать кольцами. Этот тип требует наличия на участке значительной свободной площади, что не всегда возможно;
  • с вертикальным расположением коллектора, когда он размещается в скважине на глубине порядка 200 м. Такой тип используется в случаях, когда на участке не удается выделить нужную площадь для установки теплового насоса или же поверхность участка неровная;
  • водный, когда коллектор монтируется в водоеме (природном или искусственном) на глубине ниже его промерзания. В этом случае коллектор тоже желательно размещать кольцами для экономии площади. Для установки водного теплового насоса должны быть соблюдены некоторые условия: объем воды в водоеме должен быть достаточным для получения нужного количества тепла, а также глубина водоема должна быть довольно большой, чтобы вода в нем не промерзала до самого дна.

Принцип действия ↑

Тепловые насосы для отопления, принцип действия которых схож с работой холодильников, кондиционеров и другого оборудования, способного переносить тепло из окружающей среды в помещение, забирают тепло из почвы, грунта, грунтовых вод, самого воздуха.

Принцип действия теплового насоса

Суть работы заключается в следующем.
По внешнему контуру системы отопления движется незамерзающая жидкость, которая напитывается теплом окружающей среды.
В насосе эта жидкость отдает порядка 5 градусов хладагенту и продолжает циркулировать.
Хладагент закипает (при температуре -10°C), переходя в газообразное состояние, компрессор сжимает газ, что приводит к повышению температуры.
Попадая в теплообменник, этот газ отдает тепло внутреннему контуру отопления, сам остывает, превращаясь снова в жидкость и возвращается в испаритель.

Как и холодильный агрегат, тепловой насос потребляет определенную энергию на то, чтобы реализовать термодинамический цикл (привод компрессора). Отношение теплопроизводительности к электропотреблению (так выводится коэффициент преобразования теплового насоса) зависит от уровней температуры в испарителе и конденсаторе. Уровень теплоснабжения от тепловых насосов на настоящий момент варьируется от 35 град. C до 62 град.C, что в общем-то позволяет использовать любую из отопительных систем.
При грамотном подходе экономия на энергетических ресурсах может доходить до 70 %.
Промышленность экономически и промышленно развитых стран производит обширный спектр парокомпрессионных тепловых насосов с мощностью от 5 до 1000 кВт.

Принцип действия тепловых насосов очень хорошо показан в этом коротеньком видео.

Как вы понимаете, расходы на отопление занимают свыше половины всех энергозатрат здания, поэтому сделать его максимально эффективным и дешевым — приоритетная задача. Можно ли создать экономичную систему отопления тепловым насосом без газа? Смотрите видео.

Данное оборудование бывает нескольких типов, от чего и зависят их технические характеристики.

  1. Грунт-вода – внешний контур проходит под землей, а в качестве теплоносителя используется вода. Наружный контур может располагаться вертикально или горизонтально, а также может быть помещен в водоем, расположенный поблизости.
    AlTherm (Украина). Тепловой насос для отопления дома площадью до 300 м2. Технические характеристики: теплопроизводительность 4-18 кВт, холодопроизводительность 3,6-11,3 кВт, производительность насоса внешнего контура 0,36-1,02 л/с, внутреннего – 0,14-0,39 л/с. Теплоносителем выступает пропилен гликоль. Модельный ряд представлен также насосами большой мощности (для помещений 300-1000 м2 и свыше 1000 м2).
  2. Вода-вода – внешний контур проходит через скважину или водоем, внутренний наполнен водой. Источником тепла в этом случае являются подземные грунтовые воды, кроме этого можно использовать как сбросовые, так и технологическую воду.
    Vaillant (Германия). Тепловая мощность 26,9-29,9 кВт, температура рассола 4-20°C, температура подачи контура отопления 25-62°C, коэффициент преобразования COP 3,5.
  3. Воздух-вода – источником тепла выступает воздух, в том числе теплый сбросовый. Этот тип оборудования может работать и на охлаждение. Кроме этого, его можно подключать к уже имеющейся системе отопления.
    Vesper (Китай). Оснащен циркуляционным насосом и ТЭНом, управление осуществляется с помощью контроллера. Технические характеристики: тепловая мощность 6-16 кВт, скорость потока в системе отопления 0,45-0,76 л/с, скорость воздушного охлаждающего потока 3-5 тыс. м3/ч.
  4. Воздух-воздух – внешний контур наполняется воздухом из окружающей среды, система отопления – воздушная. Тепловые насосы для отопления данного типа работают по принципу кондиционера, отличаются тем, что способны работать при более низкой уличной температуре. Оснащены высокопроизводительным радиальным вентилятором, способны осушать воздух и поддерживать определенный микроклимат в помещении. Управление осуществляется пультом.
    Mitsubishi. Могут быть вмонтированы в систему «умный дом», имеют систему фильтрации воздуха (плазменная очистка). Характеристики: теплопроизводительность 3,2-6 кВт, холодопроизводительность 2,5-5 кВт, расход воздуха 1086-2940 м3/ч, коэффициент производительности СОР 5,15-3,31.

Особенности выбора

Теплонасос — это устройство технически сложное и довольно дорогостоящее, потому подходить к приобретению этого оборудования нужно очень тщательно. Существует ряд рекомендаций, которые смогут в этом помочь:

  1. Не стоит приступать к выбору теплонасоса без предварительного выполнения расчетов и разработки проектной документации. Не соблюдение этого правила может являться причиной серьезных ошибок, и исправить их можно будет только с помощью значительных дополнительных материальных затрат.
  2. Доверить разработку проекта, установку и гарантийное обслуживание термонасоса и отопительной системы следует лишь профессиональной компании. Для начала нужно проверить наличие всех требуемых документов строительной организации, портфолио уже установленных систем, сертификаты на реализуемое оборудования. Лучше всего чтобы полностью комплекс требуемых работ производила одна фирма, которая в этом случае несет всю ответственность за установленную отопительную систему.
  3. Желательно выбирать теплонасос от европейского производителя. Отличие по стоимости при выборе российских или китайских устройств незначительное. Во время разработки сметы стоимости работ по установке, запуску и наладке всей отопительной системы разница в цене почти незаметна. Но европейское оборудование надежней в эксплуатации, так как завышенная стоимость насосного оборудования — это только результат использования качественных материалов и современных технологий.

Виды тепловых насосов

В зависимости от вида потребляемого рассеянного тепла тепловые насосы бывают:

  • грунт-вода – для их работы в водяной отопительной системе используются закрытые грунтовые контуры или геотермальные зонды, находящиеся на глубине;
  • вода-вода – принцип работы теплового насоса для отопления дома в данном случае основывается на использовании открытых скважин для забора грунтовых вод и их сброса. При этом внешний контур не закольцован, а система отопления в доме – водяная;
  • вода-воздух – устанавливают внешние водяные контуры и задействуют отопительные конструкции воздушного вида;
  • воздух-воздух – для их функционирования используют рассеянное тепло наружных воздушных масс плюс воздушная система отопления дома. 

Общий принцип работы

Технологически тепловой насос работает по знакомому всем циклу Карно, серии преобразований состояний вещества. Такие слова могут быть совершенно чужими большинству пользователей. Однако практически каждый из них имеет дома минимум одно устройство, основанное на данном физическом процессе.

Говоря простыми словами, тепловой насос представляет собой холодильник. Любая бытовая модель, где горожане привыкли хранить мясо и напитки — это нагреватель с КПД более 100%. Работает все следующим образом:

  • холодильник отнимает тепло от помещенных в него продуктов и передает его на решетку радиатора, а, следовательно — в пространство помещения;
  • одновременно идет нагрев воздуха компрессором.

В итоге, затрачивая какое-то количество электроэнергии, пользователь получает два источника тепла, один из которых (отнятая у продуктов энергия) полностью бесплатен.

Именно таков принцип работы теплового насоса. Устройство имеет обратную функциональную схему в сравнении с холодильником — в нем полезным и отвечающим за конечную эффективность узлом является теплообменник, решетка радиатора. Работает все следующим образом:

  • контур отбора тепла находится снаружи помещения, в окружении среды стабильной температуры;
  • во время работы теплового насоса температура рабочего тела принудительно снижается естественными физическими процессами ниже показателей окружающей среды;
  • происходит отбор тепла рабочим телом, интенсивность которого зависит от образованной разницы температур;
  • рабочее тело поступает в контур преобразования состояния и теплообменник помещения;
  • происходит отдача энергии воздуху или другой среде;
  • рабочее тело в исходном состоянии подается в начало цикла (контур отбора тепла).

Такая схема отопления имеет ряд достоинств и недостатков. Однако в оптимальных условиях тепловой насос показывает значительную экономию. Для обогрева дома потребуется на 70-80% меньше затрат в сравнении с классическими системами газовых и твердотельных котлов.

Сегодня существует ряд бытовых приборов, владельцы которых и не подозревают, что в них применяются инновационные, революционные идеи отбора тепла окружающей среды. Причем это может происходить даже при отрицательной температуре воздуха за окном. Это кондиционеры с функцией отопления, которая, собственно, и построена на механике теплового насоса. Принципы работы таких устройств класса воздух-воздух будут рассмотрены позже.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий