Характеристики химической коррозии и как ее устранить

Особенности антикоррозионных составов

В местах скола краски видна ржавчина, а на осях покрытых смазкой коррозии нет

Что такое ингибиторы коррозии? Это такие вещества и элементы, которые, присутствуя в среде, подверженной опасному влиянию коррозии, в состоянии уменьшать и в целом останавливать коррозионное воздействие на металл. Ингибитор коррозии может представлять собой как одно химическое соединение, так и быть смесью многих.

Ингибиторами наиболее часто являются ПАВ вещества, а также всевозможная органика. При влиянии на изделие они еще сильнее улучшают защитные характеристики оксидной пленки на металле. По этой причине вы можете сделать вывод, что присутствие кислорода в среде благоприятствует подъему защитного эффекта от воздействия коррозии. Однако, если оксидная пленка имеет слабую устойчивость — ухудшается адсорбция ингибитора на верхнем слое металла.

  • Ингибитор солеотложений ИОМС-1 (раствор)г 200 руб/кг. Макрофлекс.
  • Ингибитор коррозии Protectogen(протектоген). C Aqua.
  • Комплексонат – раствор цинкового комплекса. Эктоскейл.
  • ГАЛАН. Протектор. Ингибитор коррозии (5 л). Защищает от коррозии трубопроводы, радиаторы и прочие системы отопления.

На страже природы

У химической промышленности не самый лучший имидж с экологической точки зрения. Зачастую использование реагентов правда несёт вред окружающей среде. Как обстоит дело с реагентами для антикоррозионной защиты оборудования для НПЗ? И как можно минимизировать вред природе?Следует пояснить, что ингибиторы коррозии подразделяются на органические и неорганические.

К последним относятся амины, бикарбонат кальция, бихроматы натрия и калия, дихроматы, фосфаты, хроматы, перечисляет Юрий Бацко. Зачастую они являются токсичными и представляют угрозу здоровью человека и окружающей среде.

Неслучайно в некоторых странах их постепенно запрещают и выводят из эксплуатации. Так, в 2021 году ЕС запретил один из самых эффективных ингибиторов — шестивалентный хромат. В этих условиях наиболее логичный способ минимизировать вред окружающей среде видится в использовании органических ингибиторов, считает гендиректор «СтройПромСнаб».

При этом некоторые сильнодействующие химические ингибиторы представляют опасность не только для экологии, но, как ни парадоксально, и для самого оборудования.

Экологический аспект актуален и когда речь идёт о поглотителях сероводорода, где широкое распространение получил формальдегид и его производные.

Методы и способы защиты металлов от коррозии

Вследствие того, что коррозийный процесс протекает на верхних слоях металла конструкции, то защита поверхности заключается в создании верхнего защитного слоя для изделия, который убирает следы коррозии на металле. Такими защитными покрытиями выступают вещества металлические и неметаллические.

Исходя из названия, металлические покрытия – это вещества, в основе которых металл. Например, чтобы защитить конструкцию из железа от коррозии на ее поверхность наносят слои цинка, меди или никеля.

Очистка труб от коррозии

Неметаллические покрытия – специальные вещества, наиболее широкая группа защитных соединений. Они изготавливаются в виде красок, эмалей, смазок, грунтовок, составов на битумной и битумно-полимерной основе и т.д.

Большая популярность неметаллических соединений в устранении следов коррозии  заключается в их широком выборе, большом ценовом диапазоне, легкости изготовления и хороших защитных свойствах.

Наименьшую популярность приобрели химические покрытия из-за необходимости проводить сложные химические процессы:

  • Оксидирование – образование оксидных пленок на поверхностях защищаемых деталей.
  • Азотирование – насыщение верхних слоев материала азотом.
  • Цементация – реакция, при которой верхние слои соединяются с углеродом и т.д.

Также при коррозии металлов существуют способы защиты, при которых на этапе сплавления металлов в них вводят специальные соединения, которые смогут повысить коррозийную устойчивость будущего материала.

Большую группу защиты представляют способы электрохимической и протекторной защиты.

Электрохимическая защита состоит в процессе преобразования продуктов коррозии в среде электролитов с помощью проводящего электрического тока. Постоянный ток присоединяется к катоду (защищаемому материалу), а в качестве анода выступает проводящий металлический источник, который при своем разрушении защищает объект от ржавчины.

Электрохимическая защита от коррозии

Протекторная защита протекает по такому же принципу, однако вместе металлического связующего изделия выступают специальные изделия – протекторы, которые выступают в роли анода. В результате протекающей реакции, протектор разрушается, защищая катод (конструкцию из металла).

Таким образом, хоть коррозия является необратимым процессом, но на данный момент люди научились эффективно замедлять ее губительное воздействие.

Нейтрализуем сероводород

На следующем этапе применяются ингибиторы коррозии. Возможности этих реагентов известны давно, в промышленности они применяются, начиная с 40-х годов прошлого века.

В качестве ингибиторов коррозии, как правило, используют азотсодержащие соединения с длинной углеводородной цепью, которые способны создавать адсорбционную плёнку на поверхности металла. Среди них имидазолины, амиды, алифатические амины и их производные, четвертичные аммониевые соединения, отмечают авторы статьи о применении реагентов на установках первичной переработки нефти.

В то же время нужно отметить, что ингибиторы эффективны в борьбе с уже появившейся коррозией и крайне редко используются для профилактики её появления. По мнению Юрия Бацко, эффективнее всего сочетание двух методов: применение ингибиторов и качественной антикоррозионной защиты технологического оборудования.

Риски коррозии повышает и сероводород, который в значительных объёмах содержится в высокосернистой нефти, объёмы переработки которой поступательно растут в последние годы. Многие знают, что сероводород смертельно опасен для людей, но за счёт низкого pH он представляет угрозу и для углеродистых сталей.

Дорогостоящие адсорбционные установки обладают хорошей эффективностью, но из-за небольшой концентрации сероводорода в нефтепродуктах, поступающих на НПЗ, использовать их экономически нецелесообразно. Наиболее оправданным способом удаления сероводорода в данном случае становятся химические реагенты.

Методы защиты

Чтобы защитить металлические поверхности от образования коррозии, применяются разные методики. Каждая из них уникальна, имеет определенные особенности.

Нанесение защитного покрытия

Защитные покрытия могут быть двух видов — металлические, неметаллические. Виды неметаллических покрытий:

  1. Химический слой. Чаще это оксидные пленки, которые образуются на поверхности под воздействием пара, воздуха. Один из вариантов оксидирования — погружение деталей в раствор азотной кислоты, нагретой до 140°C.
  2. Лакокрасочные покрытия. Главный недостаток лакокрасочных покрытий — низкая устойчивость к перепадам температуры, механическому повреждению.
  3. Порошковые краски. Наносятся специализированным оборудованием в закрытых покрасочных камерах.
  4. Различные полимерные покрытия.


Нанесение порошковой краски (Фото: pixabay.com)

Легирование

К составу сплава добавляются разные легирующие добавки, которые изменяют свойства, технические характеристики материала, делают его устойчивым к разрушительному воздействию влаги.

Электрохимический метод

К металлической детали подключается источник тока. На поверхности материала образуется катодная поляризация, а ржавчина начинает разрушаться.

Покрытие металлами

Существуют разные способы покрытия металлом — термическая диффузия, металлизация, погружение в расплавленный металл, контактное осаждение.

Погружение в расплавленный металл

Специальная ванна заполняется расплавленным металлом с высокой устойчивостью к образованию коррозии. В емкость погружается деталь, которую нужно обработать.

Термическая диффузия

Термическую диффузию черных металлов чаще проводят с помощью цинка. Выполняется оно в газовой или паровой среде, при температуре до 850°C. Если обработка проходит в вакуумной среде, температура снижается до 250°C.

Металлизация

С помощью специального оборудование, которое создает мощную воздушную струю, на металлические поверхности наносится тонкий, равномерный слой расплавленного металла.

Контактное осаждение

Детали покрываются раствором солей железа или никеля. В результате обработки образуется прочная тонкая пленка. Контактное осаждение выполняется перед нанесением гальванического покрытия.

Этот метод защиты применяется реже других. Его малая популярность связан с нестабильностью, рядом сложностей. Метод подходит только для металлоконструкций, которые находятся в закрытом помещении. Внутри можно создать подходящую атмосферу (уровень влажности, температуру), при которой развитие коррозии будет невозможно.

Факторы формирования защитной пленки

Оксидная пленка способна оказывать выраженное защитное воздействие на материал. Но для этого требуется, чтобы она соответствовала нескольким важным требованиям:

  • Сплошность. На поверхности пленка распределяется ровным слоем, без пор и участков, которые не затронуты ею.
  • Хорошее сцепление с поверхностью материала. Это требуется для удержания подобного защитного барьера на месте и исключения ухудшения его свойств.
  • Химическая инертность. Пленка будет защищать металл только в том случае, если она вступает в химические реакции с окружающей средой. В противном случае, есть большая опасность, что весь защитный эффект окажется сведен к нулю.

Так как материал будет использоваться на протяжении длительного времени и сложно предсказать, что станет воздействовать на него, большое значение имеет стойкость к износу и повышенный уровень твердости.

Не менее важен и тот факт, чтобы пленка не была пористой и рыхлой. Когда она плохо контактируется с поверхностью, риск протекания разрушающих процессов становится значительно выше.

При изучении различных свойств оксидных пленок, ученые особенно пристально рассматривают сплошность. Отмечается, что на нее влияет молекулярный объем. Его показатели должны быть выше атомного объема металла.

Сплошность не ставится на первое место при определении защитных свойств оксидной пленки только для небольшой группы металлов. В их числе щелочно-земельные и щелочные.

При проведении работ по защите от химической коррозии, большое внимание уделяется методу замера толщины. Анализ характеристик происходит на разных стадиях формирования

Большое значение имеют получаемые показатели скорости окисления металла и характер протекания подобного процесса.

Когда окислы оказываются сформированными, специалисты рекомендуют проверить, какую пленку они создали на поверхности, обладает ли она нужными защитными свойствами.

Как убрать коррозию с авто

Теперь перейдем непосредственно к методам и средствам по борьбе с коррозией на автомобиле своими руками. В первую очередь необходимо механически удалить ржавчину с поверхности. Причем делать это очень тщательно! Для этих целей используют наждачную бумагу, различные абразивные круги на дрель или болгарку, а также пескоструй. Именно последний инструмент наиболее эффективно очищает пораженную поверхность.

Также для удаления коррозии используют специальные составы. Самым простым в данном случае является использование слабого раствора соляной кислоты с последующим ее удалением.

Однако наиболее надежный метод борьбы с коррозией заключается в использовании преобразователей или модификаторов ржавчины. Они преобразуют оксид железа в таннат железа. Как правило, в их состав входят полимеры, выступающие в роли грунтовки.

Преобразователи ржавчины для автомобиля превращают коррозию в слой фосфатов и хроматов железа и цинка. Также их иногда используют для обработки не подвергшегося коррозии металла перед нанесением грунта для предотвращения коррозии в будущем, и улучшения степени сцепления ЛКП с поверхностью металла.

Самостоятельная борьба с коррозией автомобиля имеет такую последовательность:

  • Обезжиривание поверхности. Для этого можно воспользоваться различными средствами, например, спиртом или уайт-спиритом.

Удаление ржавчины с корпуса

Помните, что все работы необходимо проводить тщательно, так как даже небольшое пятно ржавчины способно со временем значительно разрастись.

Виден ржавый шов

Всегда проверяйте состояние сварных швов на корпусе машины. Помните, что они являются самыми уязвимыми для воздействия коррозии. В частности, ее межкристаллитного вида, который особо опасен. Следствием ее появления становится незаметная потеря пластичности и прочности металла. Так, границы сварных зерен разрушаются хаотически, а области структурных преобразований превращаются в анод, который усиленно растворяется. Причем такое явление можно наблюдать не только на железных корпусах машин, но и на нержавейках, алюминиевых, хромоникелевых и хромистых сплавах. Коррозия в данном случае грозит выкрашиванием отдельных зерен металла, из-за чего шов и корпус в целом постепенно теряют свои механические свойства.

Самыми подверженными ржавлению участками корпуса автомобиля являются нижние части дверных панелей, пороги, передние крылья, коробчатые сечения нижней части кузова, внутренняя поверхность колесных арок. Из-за того, что доступ к перечисленным местам затруднен, всегда существует риск не заметить появление очагов ржавления. Проверяйте их состояние на смотровой яме или на подъемнике!

Электрохимическая коррозия металлов

Электрохимическая коррозия металлов – это процесс  разрушения металлов в среде различных электролитов, который сопровождается возникновением внутри системы электрического тока.

При таком типе коррозии атом удаляется из кристаллической решетки  результате двух сопряженных процессов:

  • Анодного – металл в виде ионов переходит в раствор.
  • Катодного – образовавшиеся при анодном процессе электроны, связываются деполяризатором (вещество — окислитель).

Сам процесс отвода электронов с катодных участков называется деполяризацией, а вещества способствующие отводу – деполяризаторами.

Наибольшее распространение имеет коррозия металлов с водородной и кислородной деполяризацией.

Водородная деполяризация осуществляется на катоде при электрохимической коррозии в кислой среде

2H++2e— = H2 разряд водородных ионов

2H3O++2e— = H2 + 2H2O

Кислородная деполяризация осуществляется на катоде при электрохимической коррозии в нейтральной среде

O2 + 4H++4e— = H2O восстановление растворенного кислорода

O2 + 2H2O + 4e— = 4OH—

Все металлы, по их отношению к электрохимической коррозии, можно разбить на 4 группы, которые определяются величинами их стандартных электродных потенциалов:

  1. Активные металлы (высокая термодинамическая  нестабильность) – это все металлы, находящиеся в интервале щелочные металлы — кадмий (Е0 = -0,4 В). Их коррозия возможна даже в нейтральных водных средах, в которых отсутствуют кислород  или другие окислители.
  2. Металлы средней активности (термодинамическая нестабильность)  – располагаются между кадмием и водородом (Е0 = 0,0 В). В нейтральных средах, в отсутствии кислорода, не корродируют, но подвергаются коррозии в кислых средах.
  3. Малоактивные металлы (промежуточная термодинамическая  стабильность) – находятся между водородом  и родием (Е0 = +0,8 В). Они устойчивы к коррозии в нейтральных и кислых средах, в которых отсутствует кислород  или другие окислители.
  4. Благородные металлы (высокая термодинамическая стабильность) – золото, платина, иридий, палладий. Могут подвергаться коррозии лишь в кислых средах при наличии в них сильных окислителей.

Электрохимическая коррозия может протекать в различных средах. В зависимости от характера среды выделяют следующие виды электрохимической коррозии:

  • Коррозия в растворах электролитов — в растворах кислот, оснований, солей, в природной воде.
  • Атмосферная коррозия – в атмосферных условиях и в среде любого влажного газа. Это самый распространенный вид коррозии.

Например, при взаимодействии железа с компонентами окружающей среды, некоторые его участки служат анодом, где происходит окисление железа, а другие – катодом, где происходит восстановление кислорода:

А: Fe – 2e— = Fe2+

K: O2 + 4H+ + 4e— = 2H2O

Катодом является та поверхность, где больше приток кислорода.

  • Почвенная коррозия – в зависимости от состава почв, а также ее аэрации, коррозия может протекать более или менее интенсивно. Кислые почвы наиболее агрессивны, а песчаные – наименее.
  • Аэрационная коррозия — возникает при неравномерном доступе воздуха к различным частям материала.
  • Морская коррозия – протекает в морской воде, в связи с наличием в ней растворенных солей, газов и органических веществ.
  • Биокоррозия – возникает в результате жизнедеятельности бактерий и других организмов, вырабатывающих такие газы как CO2, H2S и др., способствующие коррозии металла.
  • Электрокоррозия – происходит под действием блуждающих токов на подземных сооружениях, в результате работ электрических железных дорог, трамвайных линий и других агрегатов.

Положительный эффект от коррозии

Коррозия не всегда означает только повреждения и потери. Существует также и конструктивная коррозия, когда коррозийное воздействие на металлы производится с целью:

  • Подчеркнуть его микроструктуру;
  • Создать морщинистую или глянцевую поверхность;
  • Покрыть защитными слоями;
  • Получить матричный тип;
  • Выполнить селективное удаление материала;
  • Выработать водород;
  • Создавать художественные декорации.

Ярким примером, когда коррозия выступает не только как художественное покрытие, но и одновременно является защитным слоем, является Cor-Ten сталь, которая на сегодняшний момент широко применяется как в украшении интерьеров, так и в экстерьере, например, вентилируемые фасады из кортен стали.

Ржавчина на яблоне и груше

Чаще всего ржавчина поражает яблоню и грушу, но может встречаться и на других плодовых растениях. Заметить ржавчину можно, если внимательно рассмотреть верхнюю часть листа. В начальной стадии развития заболевания на ней появляются красновато-бурые пятнышки овальной формы, которые постепенно увеличиваются. Если на этой стадии с болезнью не начать бороться, то ближе к середине лета на нижней стороне пораженных листочков появятся хорошо заметные наросты, которые будут звездообразно разрастаться.

При дальнейшем развитии заболевания листья начнут опадать. Преждевременный листопад может привести к сильному ослаблению растения и снижению его зимостойкости.

Профилактика

Для того чтобы остановить занос зараженных ржавчиной спор с соседнего участка или из ближайшего леса, по периметру участка нужно высадить кустарники с густой кроной (например, иргу или подобные ей растения).

Меры борьбы

Ну, а побороть заболевание можно, используя препараты, в составе которых есть сера (например, коллоидная), а также применяя обработки 1%-ной бордоской жидкостью и иными разрешенными фунгицидами (Абига-Пик, Кумулус, Полирам, Строби).

Коррозия металлов под землей

Существует вред для металлов не только на поверхности, но и под землей. В настоящее время на некоторой глубине достаточно часто залегают металлические коммуникации, которых постепенно уничтожает электрокоррозия. Для борьбы с таким типом коррозии необходимо:

  • Отстранять телекоммуникационные трасы от рельс электрифицированного транспорта (проблема в блуждающих токах);
  • Увеличить сопротивление трубопровода и пространства в грунте;
  • Монтаж изолирующих фланцев;
  • Повышение электропроводимости трубопроводов и монтаж на сальниковых компенсаторах токопроводящих перемычек;
  • Регулировать допустимое уравнивание потенциалов в сети параллельных трубопроводов.
  • Установка поперечных перемычек.

Где бы не находился металлический элемент, на воздухе, под землей или в помещении, его в любом случае нужно обрабатывать. Правильно подобранные краски и их качество будет залогом успешного и недорогого способа борьбы с коррозией металла.

Механический способ удаления ржавчины

Для механической очистки принято использовать абразивы. Например: с помощью железной щётки можно убрать ржавчину на поверхности кузова. Недостаток: требуется много времени и сил для очистки всего кузова автомобиля вручную. Чтобы упростить себе жизнь можно воспользоваться шлифовальной машиной. При помощи шлиф-диска нужно зачистить очаги коррозии на 6–8 мм, а после зачистить мелкозернистой шкуркой до полной гладкости.

Для очистки больших металлических объектов лучше использовать пескоструйные аппараты – на «зараженный» участок под давлением подается смесь из песка и воды, которая эффективно борется с ржавчиной. При работе необходимо контролировать давление, с которым смесь воздействует на металл, поскольку при чрезмерно сильном напоре может деформироваться кузов.

Ознакомиться с технологией удаления ржавчины с поверхности кузова можно на видео:

Химическая коррозия в жидкостях-неэлектролитах

Хотя газовая коррозия считается наиболее распространенной, порчу металла при контакте с различными жидкостями-электролитами также не стоит сбрасывать со счетов. Большую опасность представляет контакт материала с веществами, способными проводить электричество.

Их делят на две крупные группы – органические и неорганические. Электролитов, представляющих большую опасность для металла, много – от расплавленной серы и бензола до жидкого брома, спирта, керосина, нефти и других.

Большое значение при протекании химической реакции играет чистота электролита. Когда он полностью чист, взаимодействия не наблюдается. Но стоит только попасть в состав небольшому количеству примесей, реакция начинает развиваться особенно стремительно.

Еще один дополнительный фактор риска – присутствие влаги. Тогда к опасности химической коррозии также прибавляется и угроза электрохимической.

Определение коррозии

Коррозия – это постепенное разрушение объектов, обычно металлов, вызванное активной окружающей средой-электролитом и химической реакцией окисления.

Суть коррозионного процесса – наличие постоянно действующей анодной реакции. Она вызывается за счёт растворения металла, который генерирует электроны. Часть энергии активации дополнительно расходуется на другой процесс, называемый катодной реакцией. Эти два процесса уравновешивают произведенные заряды. Зоны, вызывающие эти процессы, могут быть расположены близко или далеко друг от друга, в зависимости от ситуации.

Электроны, генерируемые в процессе, должны потребляться посредством катодной реакции. Ионы водорода и электроны вступают в реакцию с образованием атомарного, а затем и газообразного водорода. Однако водород является сильнейшим восстановителем, поэтому дальнейшую коррозию можно предотвратить, создав на поверхности металла тонкую газовую плёнку. Она служит поляризатором, уменьшающим контакт металла с водой и уменьшающим коррозию. Таким образом, всё, что разрушает барьерную плёнку, увеличивает скорость коррозии.

Основными факторами, определяющими интенсивность процесса, являются:

  • Скорость;

  • Температура;

  • Уровень возникающих механических и термических напряжений;

  • Характер протекающих химических реакций.

Коррозия сдерживает внедрение в производство новых металлических материалов и причиняет значительный ущерб экономике.

Способы защиты от коррозии

Методы борьбы с коррозией включают:

  • обработку основного металла защитным слоем (например, нанесение краски);
  • использование ингибиторов (например, хроматов или арсенитов);
  • внедрение материалов, устойчивых к коррозийным процессам.

Выбор конкретного материала зависит от потенциальной эффективности (в том числе технологической и финансовой) его использования.

Современные принципы защиты металла основываются на таких методиках:

  1. Улучшение химической сопротивляемости материалов. Успешно зарекомендовали себя химически стойкие материалы (высокополимерные пластики, стекло, керамика).
  2. Изолирование материала от агрессивной среды.
  3. Уменьшение агрессивности технологической среды. В качестве примеров таких действий можно привести нейтрализацию и удаление кислотности в коррозийных средах, а также использование всевозможных ингибиторов.
  4. Электрохимическая защита (наложение внешнего тока).

Указанные выше методики подразделяются на две группы:

  1. Повышение химической сопротивляемости и изолирование применяются до того, как металлоконструкция запускается в эксплуатацию.
  2. Уменьшение агрессивности среды и электрохимическая защита используются уже в процессе применения изделия из металла. Применение этих двух методик дает возможность внедрять новые способы защиты, в результате которых защита обеспечивается изменением эксплуатационных условий.

Один из самых часто применяемых способов защиты металла — гальваническое антикоррозийное покрытие — экономически нерентабелен при значительных площадях поверхностей. Причина в высоких затратах на подготовительный процесс.

Ведущее место среди способов защиты занимает покрытие металлов лакокрасочными материалами. Популярность такого метода борьбы с коррозией обусловлена совокупностью нескольких факторов:

  • высокие защитные свойства (гидрофобность, отталкивание жидкостей, невысокие газопроницаемость и паропроницаемость);
  • технологичность;
  • широкие возможности для декоративных решений;
  • ремонтопригодность;
  • экономическая оправданность.

В то же время, использование широкодоступных материалов не лишено недостатков:

  • неполное увлажнение металлической поверхности;
  • нарушенное сцепление покрытия с основным металлом, что ведет к скапливанию электролита под антикоррозийным покрытием и, таким образом, способствует коррозии;
  • пористость, приводящая к повышенной влагопроницаемости.

И все же, окрашенная поверхность защищает металл от коррозийных процессов даже при фрагментарном повреждении пленки, тогда как несовершенные гальванические покрытия способны даже ускорять коррозию.

Характеристики коррозии

Коррозия в простонародии больше известная под названием ржавчина. Она представляет собой процесс самопроизвольного образования на металлической поверхности налета в результате влияния окружающей среды. Ржавчина обычно имеет темно-коричневый оттенок, который портит внешние качества изделия из того или иного металла.

Коррозия металла сегодня встречается достаточно часто. Причиной ее появления является то, что некоторые виды металлических материалов являются неустойчивыми к температурным перепадам и изменениям влажности. Изделиям из металлов достаточно часто приходится контактировать с различными веществами. Они могут влиять на них по-разному. В результате образуется коррозия различных видов.

В результате конструкция, которая из него создана, приходит в негодность.

Коррозии подвергаются не только металлы, но и другие материалы. Сегодня довольно часто встречаются случаи, когда она появляется на пластмассе. Образование ржавчины присуще и бетонным изделиям.

Скорость коррозии зависит от размера температуры. С повышением температуры на каждые сто градусов появление ржавчины становится быстрее.

https://youtube.com/watch?v=KB4Qq92zKK0

Удаление коррозии – шпаклевки

Когда коррозия металла достигает своей максимальной активности, место поражения обрабатывается преобразователями ржавчины, что способствует разрыхлению поврежденных областей. В результате, это место можно легко почистить механическим способом и заполнить специальными шпаклевками по металлу. Обрабатывая шпаклевкой листовой металл, скрываются не только видимые повреждения, но и заполняются микротрещины, неровности, сколы и пр. Шпаклевки можно наносить, как на грунтовки, так и на чистый металл, при этом данный материал очень хорошо сочетается с любыми лакокрасочными покрытиями.

Условия

Коррозия – результат взаимодействия металла с веществами-окислителями, к которым относятся кислород, водород, кислоты, щёлочи. Основной характеристикой коррозии является окислительно-восстановительная реакция. Металл при коррозии окисляется, восстанавливая окислительный компонент среды.

Рис. 1. Коррозия.

Условиями для образования коррозии являются:

  • наличие металла – простого или сложного вещества (сплава);
  • наличие коррозионной среды – активных веществ, находящихся вокруг металла и воздействующих на его поверхность;
  • продолжительный период времени.

Ржавчина – оксид или гидроксид железа (III) – образуется на железосодержащих изделиях и имеет рыжий цвет. Предметы из меди при коррозии приобретают зеленоватый оттенок. Это многослойная патина, верхний слой которой состоит из карбоната меди (II).

Рис. 2. Патина.

Способы защиты от коррозии металлов

Используется несколько основных методов по защите металлических конструкций от разрушительного воздействия коррозии. При использовании защиты в основном делается упор на то, что ржавчина без внешних повреждений не может проникнуть к металлу.

При этом важно, что защитные покрытия выполняют не только предохраняющую функцию, но и придают металлическим конструкциям симпатичный внешний вид. Прежде всего, это покрытия, которые разделяются на три типа, по материалам нанесения:

Прежде всего, это покрытия, которые разделяются на три типа, по материалам нанесения:

  1. Металлические.
  2. Неметаллические.
  3. Химические.

Каждый из них имеет свои особенности и преимущества.

Металлические покрытия. Это способ, при котором на металлическую конструкцию наносят тонким слоем другой вид металла, который более стабилен к разрушительному действию коррозии при аналогичных условиях.

Покрытие может называться анодным или катодным в зависимости от того более активный или менее активный металл сверху.

Неметаллические покрытия. Они подразделяются на органические и неорганические. Чаще всего используется высокополимерный пластик, стекло и керамика. Из органических известны и популярны лаки, битум, краски, а также резина.

Химические покрытия. Это вариант, при котором на поверхности металлической конструкции при помощи химической обработки, наносится пленка, устойчивая к воздействию коррозии. Таких пленок может быть несколько разновидностей:

  1. Оксидирование — нанесение оксидных пленок.
  2. Фосфатирование — получение пленки фосфатов.
  3. Азотирование — пленка из активного азота.
  4. Воронение стали.
  5. Цементация — соединение с углеродом.

Также в качестве защиты используется изменение состава коррозийной среды. Еще один вариант защиты — ввести в металл технические соединения, которые повышают стойкость материала к разрушительным действиям коррозии.

Протекторный вид — вариант электрохимической защиты, при которой к конструкции присоединяются пластины с более активным металлом. При этом протектор — материал с отрицательными параметрами потенциала, а защищаемый материал — катод.

Металлические покрытия

Эти методы предотвращения коррозии заключаются в погружении стали в расплав металла, электрический потенциал которого меньше, чем железа (чем больше разница, тем эффективнее покрытие).

Практическое применение находят гальванические покрытия цинком или оловом, а также диффузионные покрытия никелем, хромом, кремнием или алюминием. По сравнению с другими методами защиты от коррозии гальванизация известна более низкими начальными затратами, устойчивостью и универсальностью.

Поскольку расход металла-протектора довольно велик, преимущество получают технологии, отличающиеся экономичностью используемых компонентов и прочностью создаваемых покрытий. Первым в этом списке находится цинкование. Железо в стали вступает в реакцию с цинком, образуя прочное покрытие из сплава, которое служит защитой.

Методы устранения коррозии в промышленности

Сегодня используется сразу несколько средств, которые позволяют максимально эффективно справляться с ржавчиной. К ним относятся такие, как:

  • Специальные преобразователи. Они позволяют превратить сам продукт коррозии в специальное средство, покрытие, обеспечивающее качественную защиту в дальнейшем.
  • Воздействие кислот. Для обработки могут применяться соляная или серная кислота, соединенные с предусматривающим такую возможность ингибитором. В раствор обычно добавляется до 5% серной кислоты. Уротропин станет хорошим вариантом ингибитора для такого метода обработки.

Также распространено применение молочной кислоты и вазелинового масла. Главное, чтобы специалист хорошо представлял себе особенности работы конкретного типа ингибитора и его сочетания с разными активными веществами.

Классификация видов коррозии

Неравномерная атмосферная коррозия

Коррозионные процессы отличаются широким распространением и разнообразием условий и сред, в которых они протекают. Поэтому пока нет единой и всеобъемлющей классификации встречающихся случаев коррозии.

По типу агрессивных сред, в которых протекает процесс разрушения, коррозия может быть следующих видов:

  • газовая коррозия;
  • атмосферная коррозия;
  • коррозия в неэлектролитах;
  • коррозия в электролитах;
  • подземная коррозия;
  • биокоррозия;
  • коррозия под воздействием блуждающих токов.

По условиям протекания коррозионного процесса различаются следующие виды:

  • контактная коррозия;
  • щелевая коррозия;
  • коррозия при неполном погружении;
  • коррозия при полном погружении;
  • коррозия при переменном погружении;
  • коррозия при трении;
  • межкристаллитная коррозия;
  • коррозия под напряжением.

По характеру разрушения:

  • сплошная коррозия, охватывающая всю поверхность:
    • равномерная;
    • неравномерная;
    • избирательная;
  • локальная (местная) коррозия, охватывающая отдельные участки:
    • пятнами;
    • язвенная;
    • точечная;
    • сквозная;
    • межкристаллитная (расслаивающая в деформированных заготовках и ножевая в сварных соединениях).

Главная классификация производится по механизму протекания процесса. Различают два вида:

  • химическую коррозию;
  • электрохимическую коррозию.

По характеру разрушений коррозия разделяется на сплошную и избирательную

Сплошная коррозия полностью покрывает поверхность металла. Если скорость разрушений на всей поверхности одинакова, то это равномерная коррозия. Если разрушение металла на различных его участках происходит с разной скоростью, то коррозия называется неравномерной.

Избирательная коррозия подразумевает разрушение одного из компонентов сплава или же одной структурной составляющей.

Местная коррозия, проявляющаяся в виде отдельно разбросанных по поверхности металла пятен, представляет собой углубления разной толщины. Разрушения могут представлять собой раковины или точки.

Подповерхностная коррозия образуется непосредственно на поверхности металла, после чего активно проникает вглубь. Данный вид коррозии сопровождается расслоением изделий из металла.

Межкристаллитная коррозия проявляется в разрушении металла по границам зерен. По внешнему виду металла ее достаточно сложно определить. Однако очень быстро меняются показатели прочности и пластичности металла. Изделия из него становятся хрупкими. Наиболее опасен этот вид коррозии для хромистых и хромоникелевых видов стали, а также для алюминиевых и никелевых сплавов.

Щелевая коррозия образуется на тех участках металлов и сплавов, которые находятся в резьбовых креплениях, различных зазорах и под всевозможными прокладками.

Это интересно: Виды обработки металлов давлением: расписываем во всех подробностях

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий